IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v440y2006i7084d10.1038_nature04587.html
   My bibliography  Save this article

Reverse replay of behavioural sequences in hippocampal place cells during the awake state

Author

Listed:
  • David J. Foster

    (Massachusetts Institute of Technology)

  • Matthew A. Wilson

    (Massachusetts Institute of Technology)

Abstract

Run that by me again... During sleep, neurons in the rat hippocampus are known to replay sequences of activity that took place when the rat was awake. A new study, in rats running around a track, eating and grooming, shows that replay also occurs repeatedly during the awake state, and that behavioural sequences are replayed in reverse order. Theories of spatial learning have previously suggested that reverse replay might be useful. Replay during the awake state might also explain in part why learning can be more effective if learning sessions are spaced out in time rather than clustered together, why hyperactivity causes learning problems, and why simply being awake and resting can help learning.

Suggested Citation

  • David J. Foster & Matthew A. Wilson, 2006. "Reverse replay of behavioural sequences in hippocampal place cells during the awake state," Nature, Nature, vol. 440(7084), pages 680-683, March.
  • Handle: RePEc:nat:nature:v:440:y:2006:i:7084:d:10.1038_nature04587
    DOI: 10.1038/nature04587
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04587
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nozomu H. Nakamura & Hidemasa Furue & Kenta Kobayashi & Yoshitaka Oku, 2023. "Hippocampal ensemble dynamics and memory performance are modulated by respiration during encoding," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Hefei Guan & Steven J. Middleton & Takafumi Inoue & Thomas J. McHugh, 2021. "Lateralization of CA1 assemblies in the absence of CA3 input," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    3. Alex P. Vaz & John H. Wittig & Sara K. Inati & Kareem A. Zaghloul, 2023. "Backbone spiking sequence as a basis for preplay, replay, and default states in human cortex," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Asako Noguchi & Roman Huszár & Shota Morikawa & György Buzsáki & Yuji Ikegaya, 2022. "Inhibition allocates spikes during hippocampal ripples," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Linda Judák & Balázs Chiovini & Gábor Juhász & Dénes Pálfi & Zsolt Mezriczky & Zoltán Szadai & Gergely Katona & Benedek Szmola & Katalin Ócsai & Bernadett Martinecz & Anna Mihály & Ádám Dénes & Bálint, 2022. "Sharp-wave ripple doublets induce complex dendritic spikes in parvalbumin interneurons in vivo," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    6. J Matthew Mahoney & Ali S Titiz & Amanda E Hernan & Rod C Scott, 2016. "Short-Range Temporal Interactions in Sleep; Hippocampal Spike Avalanches Support a Large Milieu of Sequential Activity Including Replay," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-25, February.
    7. Murphy, Roy E, 2006. "Information Theory and Knowledge-Gathering," MPRA Paper 16, University Library of Munich, Germany.
    8. Marta Huelin Gorriz & Masahiro Takigawa & Daniel Bendor, 2023. "The role of experience in prioritizing hippocampal replay," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    9. Anli A. Liu & Simon Henin & Saman Abbaspoor & Anatol Bragin & Elizabeth A. Buffalo & Jordan S. Farrell & David J. Foster & Loren M. Frank & Tamara Gedankien & Jean Gotman & Jennifer A. Guidera & Kari , 2022. "A consensus statement on detection of hippocampal sharp wave ripples and differentiation from other fast oscillations," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Will D Penny & Peter Zeidman & Neil Burgess, 2013. "Forward and Backward Inference in Spatial Cognition," PLOS Computational Biology, Public Library of Science, vol. 9(12), pages 1-22, December.
    11. Lukas Grossberger & Francesco P Battaglia & Martin Vinck, 2018. "Unsupervised clustering of temporal patterns in high-dimensional neuronal ensembles using a novel dissimilarity measure," PLOS Computational Biology, Public Library of Science, vol. 14(7), pages 1-34, July.
    12. Nicolas Cazin & Martin Llofriu Alonso & Pablo Scleidorovich Chiodi & Tatiana Pelc & Bruce Harland & Alfredo Weitzenfeld & Jean-Marc Fellous & Peter Ford Dominey, 2019. "Reservoir computing model of prefrontal cortex creates novel combinations of previous navigation sequences from hippocampal place-cell replay with spatial reward propagation," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-32, July.
    13. Caleb Kemere & Margaret F Carr & Mattias P Karlsson & Loren M Frank, 2013. "Rapid and Continuous Modulation of Hippocampal Network State during Exploration of New Places," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-16, September.
    14. Chaogan Yan & Dongqiang Liu & Yong He & Qihong Zou & Chaozhe Zhu & Xinian Zuo & Xiangyu Long & Yufeng Zang, 2009. "Spontaneous Brain Activity in the Default Mode Network Is Sensitive to Different Resting-State Conditions with Limited Cognitive Load," PLOS ONE, Public Library of Science, vol. 4(5), pages 1-11, May.
    15. Carina Curto & Vladimir Itskov, 2008. "Cell Groups Reveal Structure of Stimulus Space," PLOS Computational Biology, Public Library of Science, vol. 4(10), pages 1-13, October.
    16. Buddhika Bellana & Abhijit Mahabal & Christopher J. Honey, 2022. "Narrative thinking lingers in spontaneous thought," Nature Communications, Nature, vol. 13(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:440:y:2006:i:7084:d:10.1038_nature04587. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.