IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v439y2006i7077d10.1038_nature04258.html
   My bibliography  Save this article

Gamma-band synchronization in visual cortex predicts speed of change detection

Author

Listed:
  • Thilo Womelsdorf

    (Radboud University Nijmegen)

  • Pascal Fries

    (Radboud University Nijmegen
    Radboud University Nijmegen)

  • Partha P. Mitra

    (Cold Spring Harbor)

  • Robert Desimone

    (National Institutes of Health
    McGovern Institute for Brain Research at MIT)

Abstract

Our capacity to process and respond behaviourally to multiple incoming stimuli is very limited. To optimize the use of this limited capacity, attentional mechanisms give priority to behaviourally relevant stimuli at the expense of irrelevant distractors. In visual areas, attended stimuli induce enhanced responses and an improved synchronization of rhythmic neuronal activity in the gamma frequency band (40–70 Hz)1,2,3,4,5,6,7,8,9,10,11. Both effects probably improve the neuronal signalling of attended stimuli within and among brain areas1,12,13,14,15,16. Attention also results in improved behavioural performance and shortened reaction times. However, it is not known how reaction times are related to either response strength or gamma-band synchronization in visual areas. Here we show that behavioural response times to a stimulus change can be predicted specifically by the degree of gamma-band synchronization among those neurons in monkey visual area V4 that are activated by the behaviourally relevant stimulus. When there are two visual stimuli and monkeys have to detect a change in one stimulus while ignoring the other, their reactions are fastest when the relevant stimulus induces strong gamma-band synchronization before and after the change in stimulus. This enhanced gamma-band synchronization is also followed by shorter neuronal response latencies on the fast trials. Conversely, the monkeys' reactions are slowest when gamma-band synchronization is high in response to the irrelevant distractor. Thus, enhanced neuronal gamma-band synchronization and shortened neuronal response latencies to an attended stimulus seem to have direct effects on visually triggered behaviour, reflecting an early neuronal correlate of efficient visuo-motor integration.

Suggested Citation

  • Thilo Womelsdorf & Pascal Fries & Partha P. Mitra & Robert Desimone, 2006. "Gamma-band synchronization in visual cortex predicts speed of change detection," Nature, Nature, vol. 439(7077), pages 733-736, February.
  • Handle: RePEc:nat:nature:v:439:y:2006:i:7077:d:10.1038_nature04258
    DOI: 10.1038/nature04258
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature04258
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature04258?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adele Diederich & Annette Schomburg & Hans Colonius, 2012. "Saccadic Reaction Times to Audiovisual Stimuli Show Effects of Oscillatory Phase Reset," PLOS ONE, Public Library of Science, vol. 7(10), pages 1-13, October.
    2. Georgios Spyropoulos & Matteo Saponati & Jarrod Robert Dowdall & Marieke Louise Schölvinck & Conrado Arturo Bosman & Bruss Lima & Alina Peter & Irene Onorato & Johanna Klon-Lipok & Rasmus Roese & Serg, 2022. "Spontaneous variability in gamma dynamics described by a damped harmonic oscillator driven by noise," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Dhanya Parameshwaran & Upinder S Bhalla, 2013. "Theta Frequency Background Tunes Transmission but Not Summation of Spiking Responses," PLOS ONE, Public Library of Science, vol. 8(1), pages 1-12, January.
    4. Biyu J He & John M Zempel, 2013. "Average Is Optimal: An Inverted-U Relationship between Trial-to-Trial Brain Activity and Behavioral Performance," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-14, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:439:y:2006:i:7077:d:10.1038_nature04258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.