IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v435y2005i7038d10.1038_nature03503.html
   My bibliography  Save this article

The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks

Author

Listed:
  • Lukas C. Kapitein

    (Vrije Universiteit)

  • Erwin J. G. Peterman

    (Vrije Universiteit)

  • Benjamin H. Kwok

    (The Rockefeller University)

  • Jeffrey H. Kim

    (The Rockefeller University)

  • Tarun M. Kapoor

    (The Rockefeller University)

  • Christoph F. Schmidt

    (Vrije Universiteit)

Abstract

During cell division, mitotic spindles are assembled by microtubule-based motor proteins1,2. The bipolar organization of spindles is essential for proper segregation of chromosomes, and requires plus-end-directed homotetrameric motor proteins of the widely conserved kinesin-5 (BimC) family3. Hypotheses for bipolar spindle formation include the ‘push–pull mitotic muscle’ model, in which kinesin-5 and opposing motor proteins act between overlapping microtubules2,4,5. However, the precise roles of kinesin-5 during this process are unknown. Here we show that the vertebrate kinesin-5 Eg5 drives the sliding of microtubules depending on their relative orientation. We found in controlled in vitro assays that Eg5 has the remarkable capability of simultaneously moving at ∼20 nm s-1 towards the plus-ends of each of the two microtubules it crosslinks. For anti-parallel microtubules, this results in relative sliding at ∼40 nm s-1, comparable to spindle pole separation rates in vivo6. Furthermore, we found that Eg5 can tether microtubule plus-ends, suggesting an additional microtubule-binding mode for Eg5. Our results demonstrate how members of the kinesin-5 family are likely to function in mitosis, pushing apart interpolar microtubules as well as recruiting microtubules into bundles that are subsequently polarized by relative sliding.

Suggested Citation

  • Lukas C. Kapitein & Erwin J. G. Peterman & Benjamin H. Kwok & Jeffrey H. Kim & Tarun M. Kapoor & Christoph F. Schmidt, 2005. "The bipolar mitotic kinesin Eg5 moves on both microtubules that it crosslinks," Nature, Nature, vol. 435(7038), pages 114-118, May.
  • Handle: RePEc:nat:nature:v:435:y:2005:i:7038:d:10.1038_nature03503
    DOI: 10.1038/nature03503
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03503
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03503?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jurica Matković & Subhadip Ghosh & Mateja Ćosić & Susana Eibes & Marin Barišić & Nenad Pavin & Iva M. Tolić, 2022. "Kinetochore- and chromosome-driven transition of microtubules into bundles promotes spindle assembly," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Shuwen He & John P. Gillies & Juliana L. Zang & Carmen M. Córdoba-Beldad & Io Yamamoto & Yasuhiro Fujiwara & Julie Grantham & Morgan E. DeSantis & Hiroki Shibuya, 2023. "Distinct dynein complexes defined by DYNLRB1 and DYNLRB2 regulate mitotic and male meiotic spindle bipolarity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Ray, Krishanu, 2006. "How kinesins walk, assemble and transport: A birds-eye-view of some unresolved questions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 372(1), pages 52-64.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:435:y:2005:i:7038:d:10.1038_nature03503. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.