IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v432y2004i7020d10.1038_nature03047.html
   My bibliography  Save this article

Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes

Author

Listed:
  • Christian Wolfrum

    (The Rockefeller University)

  • Esra Asilmaz

    (The Rockefeller University)

  • Edlira Luca

    (The Rockefeller University)

  • Jeffrey M. Friedman

    (The Rockefeller University)

  • Markus Stoffel

    (The Rockefeller University)

Abstract

The regulation of fat and glucose metabolism in the liver is controlled primarily by insulin and glucagon. Changes in the circulating concentrations of these hormones signal fed or starvation states and elicit counter-regulatory responses that maintain normoglycaemia. Here we show that in normal mice, plasma insulin inhibits the forkhead transcription factor Foxa2 by nuclear exclusion and that in the fasted (low insulin) state Foxa2 activates transcriptional programmes of lipid metabolism and ketogenesis. In insulin-resistant or hyperinsulinaemic mice, Foxa2 is inactive and permanently located in the cytoplasm of hepatocytes. In these mice, adenoviral expression of Foxa2T156A, a nuclear, constitutively active Foxa2 that cannot be inhibited by insulin1, decreases hepatic triglyceride content, increases hepatic insulin sensitivity, reduces glucose production, normalizes plasma glucose and significantly lowers plasma insulin. These changes are associated with increased expression of genes encoding enzymes of fatty acid oxidation, ketogenesis and glycolysis. Chronic hyperinsulinaemia in insulin-resistant syndromes results in the cytoplasmic localization and inactivation of Foxa2, thereby promoting lipid accumulation and insulin resistance in the liver. Pharmacological intervention to inhibit phosphorylation of Foxa2 may be an effective treatment for type 2 diabetes.

Suggested Citation

  • Christian Wolfrum & Esra Asilmaz & Edlira Luca & Jeffrey M. Friedman & Markus Stoffel, 2004. "Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes," Nature, Nature, vol. 432(7020), pages 1027-1032, December.
  • Handle: RePEc:nat:nature:v:432:y:2004:i:7020:d:10.1038_nature03047
    DOI: 10.1038/nature03047
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature03047
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature03047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gloria Ursino & Giorgio Ramadori & Anna Höfler & Soline Odouard & Pryscila D. S. Teixeira & Florian Visentin & Christelle Veyrat-Durebex & Giulia Lucibello & Raquel Firnkes & Serena Ricci & Claudia R., 2022. "Hepatic non-parenchymal S100A9-TLR4-mTORC1 axis normalizes diabetic ketogenesis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    2. Quetzalcoatl Escalante-Covarrubias & Lucía Mendoza-Viveros & Mirna González-Suárez & Román Sitten-Olea & Laura A. Velázquez-Villegas & Fernando Becerril-Pérez & Ignacio Pacheco-Bernal & Erick Carreño-, 2023. "Time-of-day defines NAD+ efficacy to treat diet-induced metabolic disease by synchronizing the hepatic clock in mice," Nature Communications, Nature, vol. 14(1), pages 1-24, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:432:y:2004:i:7020:d:10.1038_nature03047. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.