IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v428y2004i6985d10.1038_nature02442.html
   My bibliography  Save this article

Integration of quanta in cerebellar granule cells during sensory processing

Author

Listed:
  • Paul Chadderton

    (University College London)

  • Troy W. Margrie

    (University College London)

  • Michael Häusser

    (University College London)

Abstract

To understand the computations performed by the input layers of cortical structures, it is essential to determine the relationship between sensory-evoked synaptic input and the resulting pattern of output spikes. In the cerebellum, granule cells constitute the input layer, translating mossy fibre signals into parallel fibre input to Purkinje cells1. Until now, their small size and dense packing1,2 have precluded recordings from individual granule cells in vivo. Here we use whole-cell patch-clamp recordings to show the relationship between mossy fibre synaptic currents evoked by somatosensory stimulation and the resulting granule cell output patterns. Granule cells exhibited a low ongoing firing rate, due in part to dampening of excitability by a tonic inhibitory conductance mediated by GABAA (γ-aminobutyric acid type A) receptors. Sensory stimulation produced bursts of mossy fibre excitatory postsynaptic currents (EPSCs) that summate to trigger bursts of spikes. Notably, these spike bursts were evoked by only a few quantal EPSCs, and yet spontaneous mossy fibre inputs triggered spikes only when inhibition was reduced. Our results reveal that the input layer of the cerebellum balances exquisite sensitivity with a high signal-to-noise ratio. Granule cell bursts are optimally suited to trigger glutamate receptor activation3,4,5 and plasticity6,7,8 at parallel fibre synapses, providing a link between input representation and memory storage in the cerebellum.

Suggested Citation

  • Paul Chadderton & Troy W. Margrie & Michael Häusser, 2004. "Integration of quanta in cerebellar granule cells during sensory processing," Nature, Nature, vol. 428(6985), pages 856-860, April.
  • Handle: RePEc:nat:nature:v:428:y:2004:i:6985:d:10.1038_nature02442
    DOI: 10.1038/nature02442
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature02442
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature02442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lloyd E. Russell & Mehmet Fişek & Zidan Yang & Lynn Pei Tan & Adam M. Packer & Henry W. P. Dalgleish & Selmaan N. Chettih & Christopher D. Harvey & Michael Häusser, 2024. "The influence of cortical activity on perception depends on behavioral state and sensory context," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Claudia Clopath & Jean-Pierre Nadal & Nicolas Brunel, 2012. "Storage of Correlated Patterns in Standard and Bistable Purkinje Cell Models," PLOS Computational Biology, Public Library of Science, vol. 8(4), pages 1-10, April.
    3. Shyam Diwakar & Paola Lombardo & Sergio Solinas & Giovanni Naldi & Egidio D'Angelo, 2011. "Local Field Potential Modeling Predicts Dense Activation in Cerebellar Granule Cells Clusters under LTP and LTD Control," PLOS ONE, Public Library of Science, vol. 6(7), pages 1-13, July.
    4. Claudia Clopath & Nicolas Brunel, 2013. "Optimal Properties of Analog Perceptrons with Excitatory Weights," PLOS Computational Biology, Public Library of Science, vol. 9(2), pages 1-6, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:428:y:2004:i:6985:d:10.1038_nature02442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.