IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v424y2003i6950d10.1038_nature01859.html
   My bibliography  Save this article

Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse

Author

Listed:
  • Takeshi Sakaba

    (Max Planck Institute for Biophysical Chemistry)

  • Erwin Neher

    (Max Planck Institute for Biophysical Chemistry)

Abstract

Second messenger cascades involving G proteins1,2 and calcium3 are known to modulate neurotransmitter release4,5. A prominent effect of such a cascade is the downmodulation of presynaptic calcium influx6,7, which markedly reduces evoked neurotransmitter release5,7,8. Here we show that G-protein-mediated signalling, such as through GABA (γ-amino butyric acid) subtype B (GABAB) receptors, retards the recruitment of synaptic vesicles during sustained activity and after short-term depression. This retardation occurs through a lowering of cyclic AMP, which blocks the stimulatory effect of increased calcium concentration on vesicle recruitment. In this signalling pathway, cAMP (functioning through the cAMP-dependent guanine nucleotide exchange factor) and calcium/calmodulin cooperate to enhance vesicle priming. The differential modulation of the two forms of synaptic plasticity, presynaptic inhibition and calcium-dependent recovery from synaptic depression, is expected to have interesting consequences for the dynamic behaviour of neural networks.

Suggested Citation

  • Takeshi Sakaba & Erwin Neher, 2003. "Direct modulation of synaptic vesicle priming by GABAB receptor activation at a glutamatergic synapse," Nature, Nature, vol. 424(6950), pages 775-778, August.
  • Handle: RePEc:nat:nature:v:424:y:2003:i:6950:d:10.1038_nature01859
    DOI: 10.1038/nature01859
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature01859
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature01859?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marie-Lise Jobin & Sana Siddig & Zsombor Koszegi & Yann Lanoiselée & Vladimir Khayenko & Titiwat Sungkaworn & Christian Werner & Kerstin Seier & Christin Misigaiski & Giovanna Mantovani & Markus Sauer, 2023. "Filamin A organizes γ‑aminobutyric acid type B receptors at the plasma membrane," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:424:y:2003:i:6950:d:10.1038_nature01859. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.