IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v416y2002i6880d10.1038_nature731.html
   My bibliography  Save this article

Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase

Author

Listed:
  • James P. Jackson

    (University of California)

  • Anders M. Lindroth

    (University of California)

  • Xiaofeng Cao

    (University of California)

  • Steven E. Jacobsen

    (University of California)

Abstract

Gene silencing in eukaryotes is associated with the formation of heterochromatin, a complex of proteins and DNA that block transcription. Heterochromatin is characterized by the methylation of cytosine nucleotides of the DNA, the methylation of histone H3 at lysine 9 (H3 Lys 9), and the specific binding of heterochromatin protein 1 (HP1) to methylated H3 Lys 9 (refs 1–7). Although the relationship between these chromatin modifications is generally unknown, in the fungus Neurospora crassa, DNA methylation acts genetically downstream of H3 Lys 9 methylation8. Here we report the isolation of KRYPTONITE, a methyltransferase gene specific to H3 Lys 9, identified in a mutant screen for suppressors of gene silencing at the Arabidopsis thaliana SUPERMAN (SUP) locus. Loss-of-function kryptonite alleles resemble mutants in the DNA methyltransferase gene CHROMOMETHYLASE3 (CMT3)9, showing loss of cytosine methylation at sites of CpNpG trinucleotides (where N is A, C, G or T) and reactivation of endogenous retrotransposon sequences. We show that CMT3 interacts with an Arabidopsis homologue of HP1, which in turn interacts with methylated histones. These data suggest that CpNpG DNA methylation is controlled by histone H3 Lys 9 methylation, through interaction of CMT3 with methylated chromatin.

Suggested Citation

  • James P. Jackson & Anders M. Lindroth & Xiaofeng Cao & Steven E. Jacobsen, 2002. "Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase," Nature, Nature, vol. 416(6880), pages 556-560, April.
  • Handle: RePEc:nat:nature:v:416:y:2002:i:6880:d:10.1038_nature731
    DOI: 10.1038/nature731
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature731
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature731?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinwen Zhang & Hosung Jang & Rui Xiao & Ioanna Kakoulidou & Robert S. Piecyk & Frank Johannes & Robert J. Schmitz, 2021. "Heterochromatin is a quantitative trait associated with spontaneous epiallele formation," Nature Communications, Nature, vol. 12(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:416:y:2002:i:6880:d:10.1038_nature731. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.