IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v413y2001i6854d10.1038_35096590.html
   My bibliography  Save this article

DNA topoisomerase IIα is required for RNA polymerase II transcription on chromatin templates

Author

Listed:
  • Neelima Mondal

    (Brigham and Women's Hospital, Harvard Medical School)

  • Jeffrey D. Parvin

    (Brigham and Women's Hospital, Harvard Medical School)

Abstract

In the nucleus of the cell, core RNA polymerase II (pol II) is associated with a large complex called the pol II holoenzyme (holo-pol)1,2. Transcription by core pol II in vitro on nucleosomal templates is repressed compared with that on templates of histone-free naked DNA3,4,5. We found that the transcriptional activity of holo-pol, in contrast to that of core pol II, is not markedly repressed on chromatin templates. We refer to this property of holo-pol as chromatin-dependent coactivation (CDC). Here we show that DNA topoisomerase IIα is associated with the holo-pol and is a required component of CDC. Etoposide and ICRF-193, specific inhibitors of topoisomerase II, blocked transcription on chromatin templates, but did not affect transcription on naked templates. Addition of purified topoisomerase IIα reconstituted CDC activity in reactions with core pol II. These findings suggest that transcription on chromatin templates results in the accumulation of superhelical tension, making the relaxation activity of topoisomerase II essential for productive RNA synthesis on nucleosomal DNA.

Suggested Citation

  • Neelima Mondal & Jeffrey D. Parvin, 2001. "DNA topoisomerase IIα is required for RNA polymerase II transcription on chromatin templates," Nature, Nature, vol. 413(6854), pages 435-438, September.
  • Handle: RePEc:nat:nature:v:413:y:2001:i:6854:d:10.1038_35096590
    DOI: 10.1038/35096590
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35096590
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35096590?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ian G. Cowell & Caroline A. Austin, 2012. "Mechanism of Generation of Therapy Related Leukemia in Response to Anti-Topoisomerase II Agents," IJERPH, MDPI, vol. 9(6), pages 1-17, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:413:y:2001:i:6854:d:10.1038_35096590. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.