IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v413y2001i6852d10.1038_35093019.html
   My bibliography  Save this article

Molecular mechanisms of nociception

Author

Listed:
  • David Julius

    (University of California San Francisco)

  • Allan I. Basbaum

    (University of California San Francisco)

Abstract

The sensation of pain alerts us to real or impending injury and triggers appropriate protective responses. Unfortunately, pain often outlives its usefulness as a warning system and instead becomes chronic and debilitating. This transition to a chronic phase involves changes within the spinal cord and brain, but there is also remarkable modulation where pain messages are initiated — at the level of the primary sensory neuron. Efforts to determine how these neurons detect pain-producing stimuli of a thermal, mechanical or chemical nature have revealed new signalling mechanisms and brought us closer to understanding the molecular events that facilitate transitions from acute to persistent pain.

Suggested Citation

  • David Julius & Allan I. Basbaum, 2001. "Molecular mechanisms of nociception," Nature, Nature, vol. 413(6852), pages 203-210, September.
  • Handle: RePEc:nat:nature:v:413:y:2001:i:6852:d:10.1038_35093019
    DOI: 10.1038/35093019
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35093019
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35093019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jörn Lötsch & Violeta Dimova & Isabel Lieb & Michael Zimmermann & Bruno G Oertel & Alfred Ultsch, 2015. "Multimodal Distribution of Human Cold Pain Thresholds," PLOS ONE, Public Library of Science, vol. 10(5), pages 1-12, May.
    2. Jan Hasenauer & Christine Hasenauer & Tim Hucho & Fabian J Theis, 2014. "ODE Constrained Mixture Modelling: A Method for Unraveling Subpopulation Structures and Dynamics," PLOS Computational Biology, Public Library of Science, vol. 10(7), pages 1-17, July.
    3. Yu Tao & Yuan Zhang & Xiaohong Jin & Nan Hua & Hong Liu & Renfei Qi & Zitong Huang & Yufang Sun & Dongsheng Jiang & Terrance P. Snutch & Xinghong Jiang & Jin Tao, 2023. "Epigenetic regulation of beta-endorphin synthesis in hypothalamic arcuate nucleus neurons modulates neuropathic pain in a rodent pain model," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:413:y:2001:i:6852:d:10.1038_35093019. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.