IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v412y2001i6845d10.1038_35086581.html
   My bibliography  Save this article

Natural conjugative plasmids induce bacterial biofilm development

Author

Listed:
  • Jean-Marc Ghigo

    (Unité des Membranes Bactériennes Institut Pasteur (CNRS URA 2172))

Abstract

Horizontal gene transfer is a principal source of evolution leading to change in the ecological character of bacterial species1. Bacterial conjugation2, which promotes the horizontal transfer of genetic material between donor and recipient cells by physical contact, is a phenomenon of fundamental evolutionary consequence3. Although conjugation has been studied primarily in liquid, most natural bacterial populations are found associated with environmental surfaces in complex multispecies communities called biofilms4. Biofilms are ideally suited to the exchange of genetic material of various origins, and it has been shown that bacterial conjugation occurs within biofilms5,6. Here I investigate the direct contribution of conjugative plasmids themselves to the capacity of the bacterial host to form a biofilm. Natural conjugative plasmids expressed factors that induced planktonic bacteria to form or enter biofilm communities, which favour the infectious transfer of the plasmid. This general connection between conjugation and biofilms suggests that medically relevant plasmid-bearing strains are more likely to form a biofilm. This may influence both the chances of biofilm-related infection risks and of conjugational spread of virulence factors.

Suggested Citation

  • Jean-Marc Ghigo, 2001. "Natural conjugative plasmids induce bacterial biofilm development," Nature, Nature, vol. 412(6845), pages 442-445, July.
  • Handle: RePEc:nat:nature:v:412:y:2001:i:6845:d:10.1038_35086581
    DOI: 10.1038/35086581
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35086581
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35086581?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiangan Liu & Pratick Khara & Matthew L. Baker & Peter J. Christie & Bo Hu, 2022. "Structure of a type IV secretion system core complex encoded by multi-drug resistance F plasmids," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Joaquín Bernal-Bayard & Jérôme Thiebaud & Marina Brossaud & Audrey Beaussart & Céline Caillet & Yves Waldvogel & Laetitia Travier & Sylvie Létoffé & Thierry Fontaine & Bachra Rokbi & Philippe Talaga &, 2023. "Bacterial capsular polysaccharides with antibiofilm activity share common biophysical and electrokinetic properties," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Fengxia Yang & Zulin Zhang & Zijun Li & Bingjun Han & Keqiang Zhang & Peng Yang & Yongzhen Ding, 2022. "Prevalence of High-Risk β-Lactam Resistance Genes in Family Livestock Farms in Danjiangkou Reservoir Basin, Central China," IJERPH, MDPI, vol. 19(10), pages 1-15, May.
    4. Jonasz B. Patkowski & Tobias Dahlberg & Himani Amin & Dharmender K. Gahlot & Sukhithasri Vijayrajratnam & Joseph P. Vogel & Matthew S. Francis & Joseph L. Baker & Magnus Andersson & Tiago R. D. Costa, 2023. "The F-pilus biomechanical adaptability accelerates conjugative dissemination of antimicrobial resistance and biofilm formation," Nature Communications, Nature, vol. 14(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:412:y:2001:i:6845:d:10.1038_35086581. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.