IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v409y2001i6817d10.1038_35051557.html
   My bibliography  Save this article

Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago

Author

Listed:
  • Stephen J. Mojzsis

    (University of California Los Angeles
    University of Colorado)

  • T. Mark Harrison

    (University of California Los Angeles)

  • Robert T. Pidgeon

    (Curtin University of Technology)

Abstract

Granitoid gneisses and supracrustal rocks that are 3,800–4,000 Myr old are the oldest recognized exposures of continental crust1. To obtain insight into conditions at the Earth's surface more than 4 Gyr ago requires the analysis of yet older rocks or their mineral remnants. Such an opportunity is presented by detrital zircons more than 4 Gyr old found within 3-Gyr-old quartzitic rocks in the Murchison District of Western Australia2,3. Here we report in situ U–Pb and oxygen isotope results for such zircons that place constraints on the age and composition of their sources and may therefore provide information about the nature of the Earth's early surface. We find that 3,910–4,280 Myr old zircons have oxygen isotope (δ18O) values ranging from 5.4 ± 0.6‰ to 15.0 ± 0.4‰. On the basis of these results, we postulate that the ∼4,300-Myr-old zircons formed from magmas containing a significant component of re-worked continental crust that formed in the presence of water near the Earth's surface. These data are therefore consistent with the presence of a hydrosphere interacting with the crust by 4,300 Myr ago.

Suggested Citation

  • Stephen J. Mojzsis & T. Mark Harrison & Robert T. Pidgeon, 2001. "Oxygen-isotope evidence from ancient zircons for liquid water at the Earth's surface 4,300 Myr ago," Nature, Nature, vol. 409(6817), pages 178-181, January.
  • Handle: RePEc:nat:nature:v:409:y:2001:i:6817:d:10.1038_35051557
    DOI: 10.1038/35051557
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35051557
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35051557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wriju Chowdhury & Dustin Trail & Martha Miller & Paul Savage, 2023. "Eoarchean and Hadean melts reveal arc-like trace element and isotopic signatures," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:409:y:2001:i:6817:d:10.1038_35051557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.