IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v408y2000i6813d10.1038_35047008.html
   My bibliography  Save this article

Fossiliferous Lana'i deposits formed by multiple events rather than a single giant tsunami

Author

Listed:
  • Ken H. Rubin

    (SOEST, University of Hawaii)

  • Charles H. Fletcher

    (SOEST, University of Hawaii)

  • Clark Sherman

    (SOEST, University of Hawaii)

Abstract

Giant tsunamis, generated by submarine landslides in the Hawaiian Islands, have been thought to be responsible for the deposition of chaotic gravels high on the southern coastal slopes of the islands of Lana'i and Moloka'i, Hawaii. Here we investigate this hypothesis, using uranium–thorium dating of the Hulopoe gravel (on Lana'i) and a study of stratigraphic relationships, such as facies changes and hiatuses, within the deposit. The Hulopoe gravel contains corals of two age groups, representing marine isotope stages 5e and 7 (∼135,000 and 240,000 years ago, respectively), with significant geographical and stratigraphic ordering. We show that the Hulopoe gravel was formed by multiple depositional events, separated by considerable periods of time, thus invalidating the main premise of the ‘giant wave’ hypothesis. Instead, the gravels were probably deposited during interglacial periods (when sea level was relatively high) by typical Hawaiian shoreline processes such as seasonal wave patterns, storm events and possibly ‘normal’ tsunamis, and reached their present height by uplift of Lana'i.

Suggested Citation

  • Ken H. Rubin & Charles H. Fletcher & Clark Sherman, 2000. "Fossiliferous Lana'i deposits formed by multiple events rather than a single giant tsunami," Nature, Nature, vol. 408(6813), pages 675-681, December.
  • Handle: RePEc:nat:nature:v:408:y:2000:i:6813:d:10.1038_35047008
    DOI: 10.1038/35047008
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35047008
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35047008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rhett Butler & David A. Burney & Kenneth H. Rubin & David Walsh, 2017. "The orphan Sanriku tsunami of 1586: new evidence from coral dating on Kaua‘i," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 88(2), pages 797-819, September.
    2. G. Shanmugam, 2012. "Process-sedimentological challenges in distinguishing paleo-tsunami deposits," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 63(1), pages 5-30, August.
    3. M. Jonathan & S. Srinivasalu & N. Thangadurai & N. Rajeshwara-Rao & V. Ram-Mohan & T. Narmatha, 2012. "Offshore depositional sequence of 2004 tsunami from Chennai, SE coast of India," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 62(3), pages 1155-1168, July.
    4. Scott Fisher & James Goff & Andrew Cundy & David Sear, 2023. "A qualitative review of tsunamis in Hawaiʻi," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(3), pages 1797-1832, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:408:y:2000:i:6813:d:10.1038_35047008. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.