IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v408y2000i6809d10.1038_35041700.html
   My bibliography  Save this article

Genetic pathways that regulate ageing in model organisms

Author

Listed:
  • Leonard Guarente

    (Massachusetts Institute of Technology)

  • Cynthia Kenyon

    (University of California at San Francisco)

Abstract

Searches for genes involved in the ageing process have been made in genetically tractable model organisms such as yeast, the nematode Caenorhabditis elegans , Drosophila melanogaster fruitflies and mice. These genetic studies have established that ageing is indeed regulated by specific genes, and have allowed an analysis of the pathways involved, linking physiology, signal transduction and gene regulation. Intriguing similarities in the phenotypes of many of these mutants indicate that the mutations may also perturb regulatory systems that control ageing in higher organisms.

Suggested Citation

  • Leonard Guarente & Cynthia Kenyon, 2000. "Genetic pathways that regulate ageing in model organisms," Nature, Nature, vol. 408(6809), pages 255-262, November.
  • Handle: RePEc:nat:nature:v:408:y:2000:i:6809:d:10.1038_35041700
    DOI: 10.1038/35041700
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35041700
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35041700?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yan-Ping Zhang & Wen-Hong Zhang & Pan Zhang & Qi Li & Yue Sun & Jia-Wen Wang & Shaobing O. Zhang & Tao Cai & Cheng Zhan & Meng-Qiu Dong, 2022. "Intestine-specific removal of DAF-2 nearly doubles lifespan in Caenorhabditis elegans with little fitness cost," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    2. Alan A Cohen & Emmanuel Milot & Qing Li & Patrick Bergeron & Roxane Poirier & Francis Dusseault-Bélanger & Tamàs Fülöp & Maxime Leroux & Véronique Legault & E Jeffrey Metter & Linda P Fried & Luigi Fe, 2015. "Detection of a Novel, Integrative Aging Process Suggests Complex Physiological Integration," PLOS ONE, Public Library of Science, vol. 10(3), pages 1-26, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:408:y:2000:i:6809:d:10.1038_35041700. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.