IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v405y2000i6785d10.1038_35013076.html
   My bibliography  Save this article

Targeted destabilization of HY5 during light-regulated development of Arabidopsis

Author

Listed:
  • Mark T. Osterlund

    (Cellular and Developmental Biology, Yale University, PO Box 208104)

  • Christian S. Hardtke

    (Cellular and Developmental Biology, Yale University, PO Box 208104)

  • Ning Wei

    (Cellular and Developmental Biology, Yale University, PO Box 208104)

  • Xing Wang Deng

    (Cellular and Developmental Biology, Yale University, PO Box 208104)

Abstract

Arabidopsis seedlings display contrasting developmental patterns depending on the ambient light. Seedlings grown in the light develop photomorphogenically, characterized by short hypocotyls and expanded green cotyledons. In contrast, seedlings grown in darkness become etiolated, with elongated hypocotyls and closed cotyledons on an apical hook. Light signals, perceived by multiple photoreceptors and transduced to downstream regulators, dictate the extent of photomorphogenic development in a quantitative manner. Two key downstream components, COP1 and HY5, act antagonistically in regulating seedling development1. HY5 is a bZIP transcription factor that binds directly to the promoters of light-inducible genes, promoting their expression and photomorphogenic development2,3. COP1 is a RING-finger protein with WD-40 repeats whose nuclear abundance is negatively regulated by light4,5. COP1 interacts directly with HY5 in the nucleus to regulate its activity negatively1. Here we show that the abundance of HY5 is directly correlated with the extent of photomorphogenic development, and that the COP1–HY5 interaction may specifically target HY5 for proteasome-mediated degradation in the nucleus.

Suggested Citation

  • Mark T. Osterlund & Christian S. Hardtke & Ning Wei & Xing Wang Deng, 2000. "Targeted destabilization of HY5 during light-regulated development of Arabidopsis," Nature, Nature, vol. 405(6785), pages 462-466, May.
  • Handle: RePEc:nat:nature:v:405:y:2000:i:6785:d:10.1038_35013076
    DOI: 10.1038/35013076
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35013076
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35013076?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mariola Staniak & Ewa Szpunar-Krok & Anna Kocira, 2023. "Responses of Soybean to Selected Abiotic Stresses—Photoperiod, Temperature and Water," Agriculture, MDPI, vol. 13(1), pages 1-28, January.
    2. Shichen Li & Zhihui Sun & Qing Sang & Chao Qin & Lingping Kong & Xin Huang & Huan Liu & Tong Su & Haiyang Li & Milan He & Chao Fang & Lingshuang Wang & Shuangrong Liu & Bin Liu & Baohui Liu & Xiangdon, 2023. "Soybean reduced internode 1 determines internode length and improves grain yield at dense planting," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:405:y:2000:i:6785:d:10.1038_35013076. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.