IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v404y2000i6778d10.1038_35007077.html
   My bibliography  Save this article

High mobility of proteins in the mammalian cell nucleus

Author

Listed:
  • Robert D. Phair

    (BioInformatics Services)

  • Tom Misteli

    (National Cancer Institute, NIH)

Abstract

The mammalian cell nucleus contains numerous sub-compartments, which have been implicated in essential processes such as transcription and splicing1,2. The mechanisms by which nuclear compartments are formed and maintained are unclear. More fundamentally, it is not known how proteins move within the cell nucleus. We have measured the kinetic properties of proteins in the nucleus of living cells using photobleaching techniques. Here we show that proteins involved in diverse nuclear processes move rapidly throughout the entire nucleus. Protein movement is independent of energy, which indicates that proteins may use a passive mechanism of movement. Proteins rapidly associate and dissociate with nuclear compartments. Using kinetic modelling, we determined residence times and steady-state fluxes of molecules in two main nuclear compartments. These data show that many nuclear proteins roam the cell nucleus in vivo and that nuclear compartments are the reflection of the steady-state association/dissociation of its ‘residents’ with the nucleoplasmic space. Our observations have conceptual implications for understanding nuclear architecture and how nuclear processes are organized in vivo.

Suggested Citation

  • Robert D. Phair & Tom Misteli, 2000. "High mobility of proteins in the mammalian cell nucleus," Nature, Nature, vol. 404(6778), pages 604-609, April.
  • Handle: RePEc:nat:nature:v:404:y:2000:i:6778:d:10.1038_35007077
    DOI: 10.1038/35007077
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35007077
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35007077?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yifeng Qi & Bin Zhang, 2021. "Chromatin network retards nucleoli coalescence," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Lisa Streit & Timo Kuhn & Thomas Vomhof & Verena Bopp & Albert C. Ludolph & Jochen H. Weishaupt & J. Christof M. Gebhardt & Jens Michaelis & Karin M. Danzer, 2022. "Stress induced TDP-43 mobility loss independent of stress granules," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    3. Marta Vicioso-Mantis & Raquel Fueyo & Claudia Navarro & Sara Cruz-Molina & Wilfred F. J. Ijcken & Elena Rebollo & Álvaro Rada-Iglesias & Marian A. Martínez-Balbás, 2022. "JMJD3 intrinsically disordered region links the 3D-genome structure to TGFβ-dependent transcription activation," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Brooke E. Danielsson & Bobin George Abraham & Elina Mäntylä & Jolene I. Cabe & Carl R. Mayer & Anna Rekonen & Frans Ek & Daniel E. Conway & Teemu O. Ihalainen, 2023. "Nuclear lamina strain states revealed by intermolecular force biosensor," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    5. Guo Sheng Han & Zu Guo Yu & Vo Anh & Anaththa P D Krishnajith & Yu-Chu Tian, 2013. "An Ensemble Method for Predicting Subnuclear Localizations from Primary Protein Structures," PLOS ONE, Public Library of Science, vol. 8(2), pages 1-14, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:404:y:2000:i:6778:d:10.1038_35007077. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.