IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v404y2000i6778d10.1038_35007021.html
   My bibliography  Save this article

A scalable quantum computer with ions in an array of microtraps

Author

Listed:
  • J. I. Cirac

    (Institute for Theoretical Physics, University of Innsbruck)

  • P. Zoller

    (Institute for Theoretical Physics, University of Innsbruck)

Abstract

Quantum computers require the storage of quantum information in a set of two-level systems (called qubits), the processing of this information using quantum gates and a means of final readout1. So far, only a few systems have been identified as potentially viable quantum computer models—accurate quantum control of the coherent evolution is required in order to realize gate operations, while at the same time decoherence must be avoided. Examples include quantum optical systems (such as those utilizing trapped ions2,3,4,5,6,7,8,9 or neutral atoms10,11,12, cavity quantum electrodynamics13,14,15 and nuclear magnetic resonance16,17) and solid state systems (using nuclear spins1,18, quantum dots19 and Josephson junctions20). The most advanced candidates are the quantum optical and nuclear magnetic resonance systems, and we expect that they will allow quantum computing with about ten qubits within the next few years. This is still far from the numbers required for useful applications: for example, the factorization of a 200-digit number requires about 3,500 qubits21, rising to 100,000 if error correction22 is implemented. Scalability of proposed quantum computer architectures to many qubits is thus of central importance. Here we propose a model for an ion trap quantum computer that combines scalability (a feature usually associated with solid state proposals) with the advantages of quantum optical systems (in particular, quantum control and long decoherence times).

Suggested Citation

  • J. I. Cirac & P. Zoller, 2000. "A scalable quantum computer with ions in an array of microtraps," Nature, Nature, vol. 404(6778), pages 579-581, April.
  • Handle: RePEc:nat:nature:v:404:y:2000:i:6778:d:10.1038_35007021
    DOI: 10.1038/35007021
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/35007021
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/35007021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J. M. Kitzman & J. R. Lane & C. Undershute & P. M. Harrington & N. R. Beysengulov & C. A. Mikolas & K. W. Murch & J. Pollanen, 2023. "Phononic bath engineering of a superconducting qubit," Nature Communications, Nature, vol. 14(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:404:y:2000:i:6778:d:10.1038_35007021. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.