IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v397y1999i6719d10.1038_17395.html
   My bibliography  Save this article

Frizzled regulation of Notch signalling polarizes cell fate in the Drosophila eye

Author

Listed:
  • Michael T. D. Cooper

    (University of Cambridge)

  • Sarah J. Bray

    (University of Cambridge)

Abstract

The Drosophila eye, a paradigm for epithelial organization, is highly polarized with mirror-image symmetry about the equator. The R3 and R4 photoreceptors in each ommatidium are vital in this polarity; they adopt asymmetrical positions in adult ommatidia and are the site of action for several essential genes1,2,3,4,5. Two such genes are frizzled (fz) and dishevelled (dsh), the products of which are components of a signalling pathway required in R3, and which are thought to be activated by a diffusible signal3,6,7,8,9,10. Here we show that the transmembrane receptor Notch is required downstream of dsh in R3/R4 for them to adopt distinct fates. By using an enhancer for the Notch target gene Enhancer of split mδ, we show that Notch becomes activated specifically in R4. We propose that Fz/Dsh promotes activity of the Notch ligand Delta and inhibits Notch receptor activity in R3, creating a difference in Notch signalling capacity between R3 and R4. Subsequent feedback in the Notch pathway ensures that this difference becomes amplified. This interplay between Fz/Dsh and Notch indicates that polarity is established through local comparisons between two cells and explains how a signal from one position (for example, the equator in the eye) could be interpreted by all ommatidia in the field.

Suggested Citation

  • Michael T. D. Cooper & Sarah J. Bray, 1999. "Frizzled regulation of Notch signalling polarizes cell fate in the Drosophila eye," Nature, Nature, vol. 397(6719), pages 526-530, February.
  • Handle: RePEc:nat:nature:v:397:y:1999:i:6719:d:10.1038_17395
    DOI: 10.1038/17395
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/17395
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/17395?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Komal Kumar Bollepogu Raja & Kelvin Yeung & Yoon-Kyung Shim & Yumei Li & Rui Chen & Graeme Mardon, 2023. "A single cell genomics atlas of the Drosophila larval eye reveals distinct photoreceptor developmental timelines," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    2. Huan Yang & Caroline Sibilla & Raymond Liu & Jina Yun & Bruce A. Hay & Craig Blackstone & David C. Chan & Robert J. Harvey & Ming Guo, 2022. "Clueless/CLUH regulates mitochondrial fission by promoting recruitment of Drp1 to mitochondria," Nature Communications, Nature, vol. 13(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:397:y:1999:i:6719:d:10.1038_17395. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.