IDEAS home Printed from https://ideas.repec.org/a/nat/natsus/v3y2020i11d10.1038_s41893-020-0568-8.html
   My bibliography  Save this article

Political dynamics and governance of World Heritage ecosystems

Author

Listed:
  • T. H. Morrison

    (James Cook University)

  • W. N. Adger

    (University of Exeter)

  • K. Brown

    (University of Exeter)

  • M. Hettiarachchi

    (Environment and Disaster Management Program, World Wildlife Fund)

  • C. Huchery

    (James Cook University)

  • M. C. Lemos

    (University of Michigan)

  • T. P. Hughes

    (James Cook University)

Abstract

Political dynamics across scales are often overlooked in the design, implementation and evaluation of environmental governance. We provide new evidence to explain how interactions between international organizations and national governments shape environmental governance and outcomes for 238 World Heritage ecosystems, on the basis of a new intervention–response–outcome typology. We analyse interactions between the United Nations Educational, Scientific and Cultural Organization and 102 national governments responsible for implementing ecosystem protection under the World Heritage Convention between 1972 and 2019. We combine data on the reporting, deliberation and certification of individual ecosystem-level threats, with data on national governance quality, economic complexity and key stakeholder perspectives. We find that the extent of threatened ecosystems is seriously underestimated and that efforts to formally certify threatened ecosystems are often resisted by national governments. A range of responses to international intervention, including both productive and counterproductive responses, generates material impacts at the ecosystem level. Counterproductive responses occur in nations dependent on limited high-value natural resource industries, irrespective of overall level of economic development. We identify new political approaches to improve environmental governance, including how to overcome the problem of regulatory capture. Our findings inform how we can better anticipate and account for political dynamics in environmental governance.

Suggested Citation

  • T. H. Morrison & W. N. Adger & K. Brown & M. Hettiarachchi & C. Huchery & M. C. Lemos & T. P. Hughes, 2020. "Political dynamics and governance of World Heritage ecosystems," Nature Sustainability, Nature, vol. 3(11), pages 947-955, November.
  • Handle: RePEc:nat:natsus:v:3:y:2020:i:11:d:10.1038_s41893-020-0568-8
    DOI: 10.1038/s41893-020-0568-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41893-020-0568-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41893-020-0568-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valerie Hagger & Thomas A. Worthington & Catherine E. Lovelock & Maria Fernanda Adame & Tatsuya Amano & Benjamin M. Brown & Daniel A. Friess & Emily Landis & Peter J. Mumby & Tiffany H. Morrison & Kat, 2022. "Drivers of global mangrove loss and gain in social-ecological systems," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    2. Tiffany H. Morrison & W. Neil Adger & Arun Agrawal & Katrina Brown & Matthew J. Hornsey & Terry P. Hughes & Meha Jain & Maria Carmen Lemos & Lucy Holmes McHugh & Saffron O’Neill & Derek Berkel, 2022. "Radical interventions for climate-impacted systems," Nature Climate Change, Nature, vol. 12(12), pages 1100-1106, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natsus:v:3:y:2020:i:11:d:10.1038_s41893-020-0568-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.