IDEAS home Printed from https://ideas.repec.org/a/nat/nathum/v8y2024i4d10.1038_s41562-024-01815-w.html
   My bibliography  Save this article

Human languages with greater information density have higher communication speed but lower conversation breadth

Author

Listed:
  • Pedro Aceves

    (Johns Hopkins University)

  • James A. Evans

    (University of Chicago
    Santa Fe Institute)

Abstract

Human languages vary widely in how they encode information within circumscribed semantic domains (for example, time, space, colour, human body parts and activities), but little is known about the global structure of semantic information and nothing about its relation to human communication. We first show that across a sample of ~1,000 languages, there is broad variation in how densely languages encode information into words. Second, we show that this language information density is associated with a denser configuration of semantic information. Finally, we trace the relationship between language information density and patterns of communication, showing that informationally denser languages tend towards faster communication but conceptually narrower conversations or expositions within which topics are discussed at greater depth. These results highlight an important source of variation across the human communicative channel, revealing that the structure of language shapes the nature and texture of human engagement, with consequences for human behaviour across levels of society.

Suggested Citation

  • Pedro Aceves & James A. Evans, 2024. "Human languages with greater information density have higher communication speed but lower conversation breadth," Nature Human Behaviour, Nature, vol. 8(4), pages 644-656, April.
  • Handle: RePEc:nat:nathum:v:8:y:2024:i:4:d:10.1038_s41562-024-01815-w
    DOI: 10.1038/s41562-024-01815-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41562-024-01815-w
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41562-024-01815-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nathum:v:8:y:2024:i:4:d:10.1038_s41562-024-01815-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.