IDEAS home Printed from https://ideas.repec.org/a/nat/natene/v6y2021i5d10.1038_s41560-021-00816-7.html
   My bibliography  Save this article

Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation

Author

Listed:
  • Michael T. Strand

    (Stanford University
    University of Colorado)

  • Tyler S. Hernandez

    (University of Colorado
    Stanford University)

  • Michael G. Danner

    (University of Colorado)

  • Andrew L. Yeang

    (University of Colorado)

  • Nathan Jarvey

    (University of Colorado)

  • Christopher J. Barile

    (University of Nevada, Reno)

  • Michael D. McGehee

    (University of Colorado
    National Renewable Energy Laboratory
    University of Colorado)

Abstract

Dynamic windows with adjustable tint give users control over the flow of light and heat to decrease the carbon footprint of buildings and improve the occupants’ comfort. Despite the benefits of dynamic windows, they are rarely deployed in buildings because the existing technology cannot achieve fast and colour-neutral tinting at an agreeable cost. Reversible metal electrodeposition is a promising approach to solve these problems. Here, we demonstrate the use of polymer inhibitors to reversibly deposit metal films with controlled morphology in dynamic windows. The windows that employ the polymer inhibitor can readily tint to below 0.001% visible transmittance in less than 3 min and exhibit high infrared reflectance (>70%), colour-neutral transmittance (C* 900 cm2 dynamic windows with fast response and excellent uniformity.

Suggested Citation

  • Michael T. Strand & Tyler S. Hernandez & Michael G. Danner & Andrew L. Yeang & Nathan Jarvey & Christopher J. Barile & Michael D. McGehee, 2021. "Polymer inhibitors enable >900 cm2 dynamic windows based on reversible metal electrodeposition with high solar modulation," Nature Energy, Nature, vol. 6(5), pages 546-554, May.
  • Handle: RePEc:nat:natene:v:6:y:2021:i:5:d:10.1038_s41560-021-00816-7
    DOI: 10.1038/s41560-021-00816-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41560-021-00816-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41560-021-00816-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Si-Zhe Sheng & Jin-Long Wang & Bin Zhao & Zhen He & Xue-Fei Feng & Qi-Guo Shang & Cheng Chen & Gang Pei & Jun Zhou & Jian-Wei Liu & Shu-Hong Yu, 2023. "Nanowire-based smart windows combining electro- and thermochromics for dynamic regulation of solar radiation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Eldho Abraham & Vladyslav Cherpak & Bohdan Senyuk & Jan Bart Hove & Taewoo Lee & Qingkun Liu & Ivan I. Smalyukh, 2023. "Highly transparent silanized cellulose aerogels for boosting energy efficiency of glazing in buildings," Nature Energy, Nature, vol. 8(4), pages 381-396, April.
    3. Renfu Zhang & Qinqi Zhou & Siyuan Huang & Yiwen Zhang & Rui-Tao Wen, 2024. "Capturing ion trapping and detrapping dynamics in electrochromic thin films," Nature Communications, Nature, vol. 15(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natene:v:6:y:2021:i:5:d:10.1038_s41560-021-00816-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.