IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-06761-6.html
   My bibliography  Save this article

The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism

Author

Listed:
  • Matthew G. Iadanza

    (University of Leeds)

  • Robert Silvers

    (Massachusetts Institute of Technology
    Florida State University)

  • Joshua Boardman

    (University of Leeds)

  • Hugh I. Smith

    (University of Leeds)

  • Theodoros K. Karamanos

    (University of Leeds
    NIH)

  • Galia T. Debelouchina

    (Massachusetts Institute of Technology
    University of California San Diego)

  • Yongchao Su

    (Massachusetts Institute of Technology
    Merck & Co., Inc.)

  • Robert G. Griffin

    (Massachusetts Institute of Technology)

  • Neil A. Ranson

    (University of Leeds)

  • Sheena E. Radford

    (University of Leeds)

Abstract

All amyloid fibrils contain a cross-β fold. How this structure differs in fibrils formed from proteins associated with different diseases remains unclear. Here, we combine cryo-EM and MAS-NMR to determine the structure of an amyloid fibril formed in vitro from β2-microglobulin (β2m), the culprit protein of dialysis-related amyloidosis. The fibril is composed of two identical protofilaments assembled from subunits that do not share β2m’s native tertiary fold, but are formed from similar β-strands. The fibrils share motifs with other amyloid fibrils, but also contain unique features including π-stacking interactions perpendicular to the fibril axis and an intramolecular disulfide that stabilises the subunit fold. We also describe a structural model for a second fibril morphology and show that it is built from the same subunit fold. The results provide insights into the mechanisms of fibril formation and the commonalities and differences within the amyloid fold in different protein sequences.

Suggested Citation

  • Matthew G. Iadanza & Robert Silvers & Joshua Boardman & Hugh I. Smith & Theodoros K. Karamanos & Galia T. Debelouchina & Yongchao Su & Robert G. Griffin & Neil A. Ranson & Sheena E. Radford, 2018. "The structure of a β2-microglobulin fibril suggests a molecular basis for its amyloid polymorphism," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06761-6
    DOI: 10.1038/s41467-018-06761-6
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-06761-6
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-06761-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kichitaro Nakajima & Keiichi Yamaguchi & Masahiro Noji & César Aguirre & Kensuke Ikenaka & Hideki Mochizuki & Lianjie Zhou & Hirotsugu Ogi & Toru Ito & Ichiei Narita & Fumitake Gejyo & Hironobu Naiki , 2022. "Macromolecular crowding and supersaturation protect hemodialysis patients from the onset of dialysis-related amyloidosis," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    2. Martin Wilkinson & Rodrigo U. Gallardo & Roberto Maya Martinez & Nicolas Guthertz & Masatomo So & Liam D. Aubrey & Sheena E. Radford & Neil A. Ranson, 2023. "Disease-relevant β2-microglobulin variants share a common amyloid fold," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-06761-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.