IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05633-3.html
   My bibliography  Save this article

Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions

Author

Listed:
  • Wenxia Zhang

    (Institute of Atmospheric Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Tianjun Zhou

    (Institute of Atmospheric Physics, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Liwei Zou

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

  • Lixia Zhang

    (Institute of Atmospheric Physics, Chinese Academy of Sciences
    Nanjing University of Information Science & Technology)

  • Xiaolong Chen

    (Institute of Atmospheric Physics, Chinese Academy of Sciences)

Abstract

The Paris Agreement set a goal to keep global warming well below 2 °C and pursue efforts to limit it to 1.5 °C. Understanding how 0.5 °C less warming reduces impacts and risks is key for climate policies. Here, we show that both areal and population exposures to dangerous extreme precipitation events (e.g., once in 10- and 20-year events) would increase consistently with warming in the populous global land monsoon regions based on Coupled Model Intercomparison Project Phase 5 multimodel projections. The 0.5 °C less warming would reduce areal and population exposures to once-in-20-year extreme precipitation events by 25% (18–41%) and 36% (22–46%), respectively. The avoided impacts are more remarkable for more intense extremes. Among the monsoon subregions, South Africa is the most impacted, followed by South Asia and East Asia. Our results improve the understanding of future vulnerability to, and risk of, climate extremes, which is paramount for mitigation and adaptation activities for the global monsoon region where nearly two-thirds of the world’s population lives.

Suggested Citation

  • Wenxia Zhang & Tianjun Zhou & Liwei Zou & Lixia Zhang & Xiaolong Chen, 2018. "Reduced exposure to extreme precipitation from 0.5 °C less warming in global land monsoon regions," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05633-3
    DOI: 10.1038/s41467-018-05633-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05633-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05633-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meng Zhang & Haipeng Yu & Andrew D. King & Yun Wei & Jianping Huang & Yu Ren, 2020. "Greater probability of extreme precipitation under 1.5 °C and 2 °C warming limits over East-Central Asia," Climatic Change, Springer, vol. 162(2), pages 603-619, September.
    2. Ziming Chen & Tianjun Zhou & Xiaolong Chen & Wenxia Zhang & Lixia Zhang & Mingna Wu & Liwei Zou, 2022. "Observationally constrained projection of Afro-Asian monsoon precipitation," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Lianlong Ma & Dong Huang & Xinyu Jiang & Xiaozhou Huang, 2022. "Analysis of Influencing Factors of Urban Community Function Loss in China under Flood Disaster Based on Social Network Analysis Model," IJERPH, MDPI, vol. 19(17), pages 1-14, September.
    4. Qin Ji & Jianping Yang & Can Wang & Hongju Chen & Qingshan He & Zhenqi Sun & Quntao Duan & Yao Li, 2021. "The Risk of the Population in a Changing Climate over the Tibetan Plateau, China: Integrating Hazard, Population Exposure and Vulnerability," Sustainability, MDPI, vol. 13(7), pages 1-20, March.
    5. Jinling Piao & Wen Chen & Jin-Soo Kim & Wen Zhou & Shangfeng Chen & Peng Hu & Xiaoqing Lan, 2023. "Future changes in rainy season characteristics over East China under continuous warming," Climatic Change, Springer, vol. 176(9), pages 1-21, September.
    6. Kai Liu & Qianzhi Wang & Ming Wang & Elco E. Koks, 2023. "Global transportation infrastructure exposure to the change of precipitation in a warmer world," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Lei Gu & Jiabo Yin & Pierre Gentine & Hui-Min Wang & Louise J. Slater & Sylvia C. Sullivan & Jie Chen & Jakob Zscheischler & Shenglian Guo, 2023. "Large anomalies in future extreme precipitation sensitivity driven by atmospheric dynamics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    8. Xing Zhang & Tianjun Zhou & Wenxia Zhang & Liwen Ren & Jie Jiang & Shuai Hu & Meng Zuo & Lixia Zhang & Wenmin Man, 2023. "Increased impact of heat domes on 2021-like heat extremes in North America under global warming," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05633-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.