IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-05117-4.html
   My bibliography  Save this article

Photonic crystal cavities from hexagonal boron nitride

Author

Listed:
  • Sejeong Kim

    (University of Technology Sydney)

  • Johannes E. Fröch

    (University of Technology Sydney)

  • Joe Christian

    (Thermo Fisher Scientific)

  • Marcus Straw

    (Thermo Fisher Scientific)

  • James Bishop

    (University of Technology Sydney)

  • Daniel Totonjian

    (University of Technology Sydney)

  • Kenji Watanabe

    (National Institute for Materials Science)

  • Takashi Taniguchi

    (National Institute for Materials Science)

  • Milos Toth

    (University of Technology Sydney)

  • Igor Aharonovich

    (University of Technology Sydney)

Abstract

Development of scalable quantum photonic technologies requires on-chip integration of photonic components. Recently, hexagonal boron nitride (hBN) has emerged as a promising platform, following reports of hyperbolic phonon-polaritons and optically stable, ultra-bright quantum emitters. However, exploitation of hBN in scalable, on-chip nanophotonic circuits and cavity quantum electrodynamics (QED) experiments requires robust techniques for the fabrication of high-quality optical resonators. In this letter, we design and engineer suspended photonic crystal cavities from hBN and demonstrate quality (Q) factors in excess of 2000. Subsequently, we show deterministic, iterative tuning of individual cavities by direct-write EBIE without significant degradation of the Q-factor. The demonstration of tunable cavities made from hBN is an unprecedented advance in nanophotonics based on van der Waals materials. Our results and hBN processing methods open up promising avenues for solid-state systems with applications in integrated quantum photonics, polaritonics and cavity QED experiments.

Suggested Citation

  • Sejeong Kim & Johannes E. Fröch & Joe Christian & Marcus Straw & James Bishop & Daniel Totonjian & Kenji Watanabe & Takashi Taniguchi & Milos Toth & Igor Aharonovich, 2018. "Photonic crystal cavities from hexagonal boron nitride," Nature Communications, Nature, vol. 9(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05117-4
    DOI: 10.1038/s41467-018-05117-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-05117-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-05117-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yaolong Li & Pengzuo Jiang & Xiaying Lyu & Xiaofang Li & Huixin Qi & Jinglin Tang & Zhaohang Xue & Hong Yang & Guowei Lu & Quan Sun & Xiaoyong Hu & Yunan Gao & Qihuang Gong, 2023. "Revealing low-loss dielectric near-field modes of hexagonal boron nitride by photoemission electron microscopy," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Luca Sortino & Angus Gale & Lucca Kühner & Chi Li & Jonas Biechteler & Fedja J. Wendisch & Mehran Kianinia & Haoran Ren & Milos Toth & Stefan A. Maier & Igor Aharonovich & Andreas Tittl, 2024. "Optically addressable spin defects coupled to bound states in the continuum metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    3. Lujun Huang & Rong Jin & Chaobiao Zhou & Guanhai Li & Lei Xu & Adam Overvig & Fu Deng & Xiaoshuang Chen & Wei Lu & Andrea Alù & Andrey E. Miroshnichenko, 2023. "Ultrahigh-Q guided mode resonances in an All-dielectric metasurface," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-05117-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.