IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-04926-x.html
   My bibliography  Save this article

Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia

Author

Listed:
  • Alexander Rosenberg

    (Tel Aviv University)

  • Iuliana V. Ene

    (Brown University)

  • Maayan Bibi

    (Tel Aviv University)

  • Shiri Zakin

    (Tel Aviv University)

  • Ella Shtifman Segal

    (Tel Aviv University)

  • Naomi Ziv

    (University of California)

  • Alon M. Dahan

    (Tel Aviv University)

  • Arnaldo Lopes Colombo

    (Federal University of São Paulo)

  • Richard J. Bennett

    (Brown University)

  • Judith Berman

    (Tel Aviv University)

Abstract

Tolerance to antifungal drug concentrations above the minimal inhibitory concentration (MIC) is rarely quantified, and current clinical recommendations suggest it should be ignored. Here, we quantify antifungal tolerance in Candida albicans isolates as the fraction of growth above the MIC, and find that it is distinct from susceptibility/resistance. Instead, tolerance is due to the slow growth of subpopulations of cells that overcome drug stress more efficiently than the rest of the population, and correlates inversely with intracellular drug accumulation. Many adjuvant drugs used in combination with fluconazole, a widely used fungistatic drug, reduce tolerance without affecting resistance. Accordingly, in an invertebrate infection model, adjuvant combination therapy is more effective than fluconazole in treating infections with highly tolerant isolates and does not affect infections with low tolerance isolates. Furthermore, isolates recovered from immunocompetent patients with persistent candidemia display higher tolerance than isolates readily cleared by fluconazole. Thus, tolerance correlates with, and may help predict, patient responses to fluconazole therapy.

Suggested Citation

  • Alexander Rosenberg & Iuliana V. Ene & Maayan Bibi & Shiri Zakin & Ella Shtifman Segal & Naomi Ziv & Alon M. Dahan & Arnaldo Lopes Colombo & Richard J. Bennett & Judith Berman, 2018. "Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia," Nature Communications, Nature, vol. 9(1), pages 1-14, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04926-x
    DOI: 10.1038/s41467-018-04926-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-04926-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-04926-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Amir Arastehfar & Farnaz Daneshnia & Nathaly Cabrera & Suyapa Penalva-Lopez & Jansy Sarathy & Matthew Zimmerman & Erika Shor & David S. Perlin, 2023. "Macrophage internalization creates a multidrug-tolerant fungal persister reservoir and facilitates the emergence of drug resistance," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Neil A. R. Gow & Carolyn Johnson & Judith Berman & Alix T. Coste & Christina A. Cuomo & David S. Perlin & Tihana Bicanic & Thomas S. Harrison & Nathan Wiederhold & Mike Bromley & Tom Chiller & Keegan , 2022. "The importance of antimicrobial resistance in medical mycology," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    3. Liqing Hu & Cancan Sun & Justin M. Kidd & Jizhong Han & Xianjun Fang & Hongtao Li & Qingdai Liu & Aaron E. May & Qianbin Li & Lei Zhou & Qinglian Liu, 2023. "A first-in-class inhibitor of Hsp110 molecular chaperones of pathogenic fungi," Nature Communications, Nature, vol. 14(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-04926-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.