IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03686-y.html
   My bibliography  Save this article

Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system

Author

Listed:
  • Y. Masuyama

    (The University of Tokyo)

  • K. Funo

    (Peking University)

  • Y. Murashita

    (The University of Tokyo)

  • A. Noguchi

    (The University of Tokyo)

  • S. Kono

    (The University of Tokyo)

  • Y. Tabuchi

    (The University of Tokyo)

  • R. Yamazaki

    (The University of Tokyo)

  • M. Ueda

    (The University of Tokyo
    RIKEN)

  • Y. Nakamura

    (The University of Tokyo
    RIKEN)

Abstract

Information thermodynamics bridges information theory and statistical physics by connecting information content and entropy production through measurement and feedback control. Maxwell’s demon is a hypothetical character that uses information about a system to reduce its entropy. Here we realize a Maxwell’s demon acting on a superconducting quantum circuit. We implement quantum non-demolition projective measurement and feedback operation of a qubit and verify the generalized integral fluctuation theorem. We also evaluate the conversion efficiency from information gain to work in the feedback protocol. Our experiment constitutes a step toward experimental studies of quantum information thermodynamics in artificially made quantum machines.

Suggested Citation

  • Y. Masuyama & K. Funo & Y. Murashita & A. Noguchi & S. Kono & Y. Tabuchi & R. Yamazaki & M. Ueda & Y. Nakamura, 2018. "Information-to-work conversion by Maxwell’s demon in a superconducting circuit quantum electrodynamical system," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03686-y
    DOI: 10.1038/s41467-018-03686-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03686-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03686-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gherardini, Stefano & Buffoni, Lorenzo & Giachetti, Guido & Trombettoni, Andrea & Ruffo, Stefano, 2022. "Energy fluctuation relations and repeated quantum measurements," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    2. Fabrizio Berritta & Torbjørn Rasmussen & Jan A. Krzywda & Joost Heijden & Federico Fedele & Saeed Fallahi & Geoffrey C. Gardner & Michael J. Manfra & Evert Nieuwenburg & Jeroen Danon & Anasua Chatterj, 2024. "Real-time two-axis control of a spin qubit," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03686-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.