IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-03472-w.html
   My bibliography  Save this article

Amplification of heat extremes by plant CO2 physiological forcing

Author

Listed:
  • Christopher B. Skinner

    (University of Michigan)

  • Christopher J. Poulsen

    (University of Michigan)

  • Justin S. Mankin

    (Lamont-Doherty Earth Observatory
    NASA Goddard Institute for Space Studies
    Dartmouth College)

Abstract

Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO2. Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO2 on heat wave characteristics. Vegetation responses to a quadrupling of CO2 increase summer heat wave occurrence by 20 days or more—30–50% of the radiative response alone—across tropical and mid-to-high latitude forests. These increases are caused by CO2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO2-driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO2 fertilization.

Suggested Citation

  • Christopher B. Skinner & Christopher J. Poulsen & Justin S. Mankin, 2018. "Amplification of heat extremes by plant CO2 physiological forcing," Nature Communications, Nature, vol. 9(1), pages 1-11, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03472-w
    DOI: 10.1038/s41467-018-03472-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-03472-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-03472-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Julien Boé, 2021. "The physiological effect of CO2 on the hydrological cycle in summer over Europe and land-atmosphere interactions," Climatic Change, Springer, vol. 167(1), pages 1-20, July.
    2. Liang Qiao & Zhiyan Zuo & Renhe Zhang & Shilong Piao & Dong Xiao & Kaiwen Zhang, 2023. "Soil moisture–atmosphere coupling accelerates global warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-03472-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.