IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v9y2018i1d10.1038_s41467-018-02819-7.html
   My bibliography  Save this article

Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction

Author

Listed:
  • Zhe Weng

    (South University of Science and Technology of China
    Yale University
    Yale University)

  • Yueshen Wu

    (Yale University
    Yale University)

  • Maoyu Wang

    (Oregon State University)

  • Jianbing Jiang

    (Yale University
    Yale University)

  • Ke Yang

    (Yale University
    Yale University)

  • Shengjuan Huo

    (Yale University
    Yale University
    Shanghai University)

  • Xiao-Feng Wang

    (University of South China)

  • Qing Ma

    (Northwestern University)

  • Gary W. Brudvig

    (Yale University
    Yale University)

  • Victor S. Batista

    (Yale University
    Yale University)

  • Yongye Liang

    (South University of Science and Technology of China)

  • Zhenxing Feng

    (Oregon State University)

  • Hailiang Wang

    (Yale University
    Yale University)

Abstract

Restructuring-induced catalytic activity is an intriguing phenomenon of fundamental importance to rational design of high-performance catalyst materials. We study three copper-complex materials for electrocatalytic carbon dioxide reduction. Among them, the copper(II) phthalocyanine exhibits by far the highest activity for yielding methane with a Faradaic efficiency of 66% and a partial current density of 13 mA cm−2 at the potential of – 1.06 V versus the reversible hydrogen electrode. Utilizing in-situ and operando X-ray absorption spectroscopy, we find that under the working conditions copper(II) phthalocyanine undergoes reversible structural and oxidation state changes to form ~ 2 nm metallic copper clusters, which catalyzes the carbon dioxide-to-methane conversion. Density functional calculations rationalize the restructuring behavior and attribute the reversibility to the strong divalent metal ion–ligand coordination in the copper(II) phthalocyanine molecular structure and the small size of the generated copper clusters under the reaction conditions.

Suggested Citation

  • Zhe Weng & Yueshen Wu & Maoyu Wang & Jianbing Jiang & Ke Yang & Shengjuan Huo & Xiao-Feng Wang & Qing Ma & Gary W. Brudvig & Victor S. Batista & Yongye Liang & Zhenxing Feng & Hailiang Wang, 2018. "Active sites of copper-complex catalytic materials for electrochemical carbon dioxide reduction," Nature Communications, Nature, vol. 9(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02819-7
    DOI: 10.1038/s41467-018-02819-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-018-02819-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-018-02819-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Charles E. Creissen & Marc Fontecave, 2022. "Keeping sight of copper in single-atom catalysts for electrochemical carbon dioxide reduction," Nature Communications, Nature, vol. 13(1), pages 1-4, December.
    2. Zishan Han & Daliang Han & Zhe Chen & Jiachen Gao & Guangyi Jiang & Xinyu Wang & Shuaishuai Lyu & Yong Guo & Chuannan Geng & Lichang Yin & Zhe Weng & Quan-Hong Yang, 2022. "Steering surface reconstruction of copper with electrolyte additives for CO2 electroreduction," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    3. Li Zhang & Xiaoju Yang & Qing Yuan & Zhiming Wei & Jie Ding & Tianshu Chu & Chao Rong & Qiao Zhang & Zhenkun Ye & Fu-Zhen Xuan & Yueming Zhai & Bowei Zhang & Xuan Yang, 2023. "Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Zhe Weng & Yueshen Wu & Maoyu Wang & Gary W. Brudvig & Victor S. Batista & Yongye Liang & Zhenxing Feng & Hailiang Wang, 2022. "Reply To: Confined molecular catalysts provide an alternative interpretation to the electrochemically reversible demetallation of copper complexes," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    5. Wei Liu & Pengbo Zhai & Aowen Li & Bo Wei & Kunpeng Si & Yi Wei & Xingguo Wang & Guangda Zhu & Qian Chen & Xiaokang Gu & Ruifeng Zhang & Wu Zhou & Yongji Gong, 2022. "Electrochemical CO2 reduction to ethylene by ultrathin CuO nanoplate arrays," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Eamonn Murphy & Yuanchao Liu & Ivana Matanovic & Martina Rüscher & Ying Huang & Alvin Ly & Shengyuan Guo & Wenjie Zang & Xingxu Yan & Andrea Martini & Janis Timoshenko & Beatriz Roldán Cuenya & Iryna , 2023. "Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    7. Mengyang Fan & Rui Kai Miao & Pengfei Ou & Yi Xu & Zih-Yi Lin & Tsung-Ju Lee & Sung-Fu Hung & Ke Xie & Jianan Erick Huang & Weiyan Ni & Jun Li & Yong Zhao & Adnan Ozden & Colin P. O’Brien & Yuanjun Ch, 2023. "Single-site decorated copper enables energy- and carbon-efficient CO2 methanation in acidic conditions," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    8. Yu Zhang & Long-Zhang Dong & Shan Li & Xin Huang & Jia-Nan Chang & Jian-Hui Wang & Jie Zhou & Shun-Li Li & Ya-Qian Lan, 2021. "Coordination environment dependent selectivity of single-site-Cu enriched crystalline porous catalysts in CO2 reduction to CH4," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    9. Xin Yu Zhang & Zhen Xin Lou & Jiacheng Chen & Yuanwei Liu & Xuefeng Wu & Jia Yue Zhao & Hai Yang Yuan & Minghui Zhu & Sheng Dai & Hai Feng Wang & Chenghua Sun & Peng Fei Liu & Hua Gui Yang, 2023. "Direct OC-CHO coupling towards highly C2+ products selective electroreduction over stable Cu0/Cu2+ interface," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Rui Li & Yongmeng Wu & Changhong Wang & Meng He & Cuibo Liu & Bin Zhang, 2022. "One-pot H/D exchange and low-coordinated iron electrocatalyzed deuteration of nitriles in D2O to α,β-deuterio aryl ethylamines," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    11. Baiyu Yang & Ling Chen & Songlin Xue & Hao Sun & Kun Feng & Yufeng Chen & Xiang Zhang & Long Xiao & Yongze Qin & Jun Zhong & Zhao Deng & Yan Jiao & Yang Peng, 2022. "Electrocatalytic CO2 reduction to alcohols by modulating the molecular geometry and Cu coordination in bicentric copper complexes," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    12. Chia-Shuo Hsu & Jiali Wang & You-Chiuan Chu & Jui-Hsien Chen & Chia-Ying Chien & Kuo-Hsin Lin & Li Duan Tsai & Hsiao-Chien Chen & Yen-Fa Liao & Nozomu Hiraoka & Yuan-Chung Cheng & Hao Ming Chen, 2023. "Activating dynamic atomic-configuration for single-site electrocatalyst in electrochemical CO2 reduction," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    13. Yizhou Dai & Huan Li & Chuanhao Wang & Weiqing Xue & Menglu Zhang & Donghao Zhao & Jing Xue & Jiawei Li & Laihao Luo & Chunxiao Liu & Xu Li & Peixin Cui & Qiu Jiang & Tingting Zheng & Songqi Gu & Yao , 2023. "Manipulating local coordination of copper single atom catalyst enables efficient CO2-to-CH4 conversion," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Etienne Boutin & Aude Salamé & Marc Robert, 2022. "Confined molecular catalysts provide an alternative interpretation to the electrochemically reversible demetallation of copper complexes," Nature Communications, Nature, vol. 13(1), pages 1-3, December.
    15. Huihui Zhang & Chang Xu & Xiaowen Zhan & Yu Yu & Kaifu Zhang & Qiquan Luo & Shan Gao & Jinlong Yang & Yi Xie, 2022. "Mechanistic insights into CO2 conversion chemistry of copper bis-(terpyridine) molecular electrocatalyst using accessible operando spectrochemistry," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:9:y:2018:i:1:d:10.1038_s41467-018-02819-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.