IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-02369-4.html
   My bibliography  Save this article

Diurnal cloud cycle biases in climate models

Author

Listed:
  • Jun Yin

    (Princeton University
    Princeton University)

  • Amilcare Porporato

    (Princeton University
    Princeton University)

Abstract

Clouds’ efficiency at reflecting solar radiation and trapping the terrestrial radiation is strongly modulated by the diurnal cycle of clouds (DCC). Much attention has been paid to mean cloud properties due to their critical role in climate projections; however, less research has been devoted to the DCC. Here we quantify the mean, amplitude, and phase of the DCC in climate models and compare them with satellite observations and reanalysis data. While the mean appears to be reliable, the amplitude and phase of the DCC show marked inconsistencies, inducing overestimation of radiation in most climate models. In some models, DCC appears slightly shifted over the ocean, likely as a result of tuning and fortuitously compensating the large DCC errors over the land. While this model tuning does not seem to invalidate climate projections because of the limited DCC response to global warming, it may potentially increase the uncertainty of climate predictions.

Suggested Citation

  • Jun Yin & Amilcare Porporato, 2017. "Diurnal cloud cycle biases in climate models," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02369-4
    DOI: 10.1038/s41467-017-02369-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-02369-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-02369-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Junying Fang & Yu Du, 2022. "A global survey of diurnal offshore propagation of rainfall," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Abhnil Amtesh Prasad & Merlinde Kay, 2020. "Assessment of Simulated Solar Irradiance on Days of High Intermittency Using WRF-Solar," Energies, MDPI, vol. 13(2), pages 1-22, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-02369-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.