IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-01926-1.html
   My bibliography  Save this article

Origami silicon optoelectronics for hemispherical electronic eye systems

Author

Listed:
  • Kan Zhang

    (University of Wisconsin–Madison)

  • Yei Hwan Jung

    (University of Wisconsin–Madison)

  • Solomon Mikael

    (University of Wisconsin–Madison)

  • Jung-Hun Seo

    (University of Wisconsin–Madison)

  • Munho Kim

    (University of Wisconsin–Madison)

  • Hongyi Mi

    (University of Wisconsin–Madison)

  • Han Zhou

    (University of Wisconsin–Madison)

  • Zhenyang Xia

    (University of Wisconsin–Madison)

  • Weidong Zhou

    (University of Texas at Arlington)

  • Shaoqin Gong

    (University of Wisconsin–Madison)

  • Zhenqiang Ma

    (University of Wisconsin–Madison)

Abstract

Digital image sensors in hemispherical geometries offer unique imaging advantages over their planar counterparts, such as wide field of view and low aberrations. Deforming miniature semiconductor-based sensors with high-spatial resolution into such format is challenging. Here we report a simple origami approach for fabricating single-crystalline silicon-based focal plane arrays and artificial compound eyes that have hemisphere-like structures. Convex isogonal polyhedral concepts allow certain combinations of polygons to fold into spherical formats. Using each polygon block as a sensor pixel, the silicon-based devices are shaped into maps of truncated icosahedron and fabricated on flexible sheets and further folded either into a concave or convex hemisphere. These two electronic eye prototypes represent simple and low-cost methods as well as flexible optimization parameters in terms of pixel density and design. Results demonstrated in this work combined with miniature size and simplicity of the design establish practical technology for integration with conventional electronic devices.

Suggested Citation

  • Kan Zhang & Yei Hwan Jung & Solomon Mikael & Jung-Hun Seo & Munho Kim & Hongyi Mi & Han Zhou & Zhenyang Xia & Weidong Zhou & Shaoqin Gong & Zhenqiang Ma, 2017. "Origami silicon optoelectronics for hemispherical electronic eye systems," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01926-1
    DOI: 10.1038/s41467-017-01926-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-01926-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-01926-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bo Dai & Liang Zhang & Chenglong Zhao & Hunter Bachman & Ryan Becker & John Mai & Ziao Jiao & Wei Li & Lulu Zheng & Xinjun Wan & Tony Jun Huang & Songlin Zhuang & Dawei Zhang, 2021. "Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    2. Zhenghao Long & Xiao Qiu & Chak Lam Jonathan Chan & Zhibo Sun & Zhengnan Yuan & Swapnadeep Poddar & Yuting Zhang & Yucheng Ding & Leilei Gu & Yu Zhou & Wenying Tang & Abhishek Kumar Srivastava & Cunji, 2023. "A neuromorphic bionic eye with filter-free color vision using hemispherical perovskite nanowire array retina," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    3. Xiaopeng Feng & Yuhong He & Wei Qu & Jinmei Song & Wanting Pan & Mingrui Tan & Bai Yang & Haotong Wei, 2022. "Spray-coated perovskite hemispherical photodetector featuring narrow-band and wide-angle imaging," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-01926-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.