IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00714-1.html
   My bibliography  Save this article

Multipurpose silicon photonics signal processor core

Author

Listed:
  • Daniel Pérez

    (Universitat Politècnica de València)

  • Ivana Gasulla

    (Universitat Politècnica de València)

  • Lee Crudgington

    (University of Southampton)

  • David J. Thomson

    (University of Southampton)

  • Ali Z. Khokhar

    (University of Southampton)

  • Ke Li

    (University of Southampton)

  • Wei Cao

    (University of Southampton)

  • Goran Z. Mashanovich

    (University of Southampton
    School of Electrical Engineering, University of Belgrade)

  • José Capmany

    (Universitat Politècnica de València)

Abstract

Integrated photonics changes the scaling laws of information and communication systems offering architectural choices that combine photonics with electronics to optimize performance, power, footprint, and cost. Application-specific photonic integrated circuits, where particular circuits/chips are designed to optimally perform particular functionalities, require a considerable number of design and fabrication iterations leading to long development times. A different approach inspired by electronic Field Programmable Gate Arrays is the programmable photonic processor, where a common hardware implemented by a two-dimensional photonic waveguide mesh realizes different functionalities through programming. Here, we report the demonstration of such reconfigurable waveguide mesh in silicon. We demonstrate over 20 different functionalities with a simple seven hexagonal cell structure, which can be applied to different fields including communications, chemical and biomedical sensing, signal processing, multiprocessor networks, and quantum information systems. Our work is an important step toward this paradigm.

Suggested Citation

  • Daniel Pérez & Ivana Gasulla & Lee Crudgington & David J. Thomson & Ali Z. Khokhar & Ke Li & Wei Cao & Goran Z. Mashanovich & José Capmany, 2017. "Multipurpose silicon photonics signal processor core," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00714-1
    DOI: 10.1038/s41467-017-00714-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00714-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00714-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Berry, James & Mehta, Saurabh & Mukherjee, Priya & Ruebeck, Hannah & Shastry, Gauri Kartini, 2021. "Crowd-out in school-based health interventions: Evidence from India’s midday meals program," Journal of Public Economics, Elsevier, vol. 204(C).
    2. Jiaojiao Xu & Chuanjie Yan & Yangyang Su & Yong Liu, 2020. "Analysis of high-rise building safety detection methods based on big data and artificial intelligence," International Journal of Distributed Sensor Networks, , vol. 16(6), pages 15501477209, June.
    3. Chunxue Wang & Daming Zhang & Jian Yue & Xucheng Zhang & Hang Lin & Xiangyi Sun & Anqi Cui & Tong Zhang & Changming Chen & Teng Fei, 2023. "Dual-layer optical encryption fluorescent polymer waveguide chip based on optical pulse-code modulation technique," Nature Communications, Nature, vol. 14(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00714-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.