IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00617-1.html
   My bibliography  Save this article

Taming active turbulence with patterned soft interfaces

Author

Listed:
  • P. Guillamat

    (Universitat de Barcelona
    Universitat de Barcelona)

  • J. Ignés-Mullol

    (Universitat de Barcelona
    Universitat de Barcelona)

  • F. Sagués

    (Universitat de Barcelona
    Universitat de Barcelona)

Abstract

Active matter embraces systems that self-organize at different length and time scales, often exhibiting turbulent flows apparently deprived of spatiotemporal coherence. Here, we use a layer of a tubulin-based active gel to demonstrate that the geometry of active flows is determined by a single length scale, which we reveal in the exponential distribution of vortex sizes of active turbulence. Our experiments demonstrate that the same length scale reemerges as a cutoff for a scale-free power law distribution of swirling laminar flows when the material evolves in contact with a lattice of circular domains. The observed prevalence of this active length scale can be understood by considering the role of the topological defects that form during the spontaneous folding of microtubule bundles. These results demonstrate an unexpected strategy for active systems to adapt to external stimuli, and provide with a handle to probe the existence of intrinsic length and time scales.

Suggested Citation

  • P. Guillamat & J. Ignés-Mullol & F. Sagués, 2017. "Taming active turbulence with patterned soft interfaces," Nature Communications, Nature, vol. 8(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00617-1
    DOI: 10.1038/s41467-017-00617-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00617-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00617-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jerôme Hardoüin & Claire Doré & Justine Laurent & Teresa Lopez-Leon & Jordi Ignés-Mullol & Francesc Sagués, 2022. "Active boundary layers in confined active nematics," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Jack Paget & Marco G. Mazza & Andrew J. Archer & Tyler N. Shendruk, 2023. "Complex-tensor theory of simple smectics," Nature Communications, Nature, vol. 14(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00617-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.