IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_s41467-017-00387-w.html
   My bibliography  Save this article

Diffusive and arrested transport of atoms under tailored disorder

Author

Listed:
  • Fangzhao Alex An

    (University of Illinois at Urbana-Champaign)

  • Eric J. Meier

    (University of Illinois at Urbana-Champaign)

  • Bryce Gadway

    (University of Illinois at Urbana-Champaign)

Abstract

Ultracold atoms in optical lattices offer a unique platform for investigating disorder-driven phenomena. While static disordered site potentials have been explored in a number of experiments, a more general, dynamical control over site-energy and off-diagonal tunnelling disorder has been lacking. The use of atomic quantum states as synthetic dimensions has introduced the spectroscopic, site-resolved control necessary to engineer more tailored realisations of disorder. Here, we present explorations of dynamical and tunneling disorder in an atomic system by controlling laser-driven dynamics of atomic population in a momentum-space lattice. By applying static tunnelling phase disorder to a one-dimensional lattice, we observe ballistic quantum spreading. When the applied disorder fluctuates on time scales comparable to intersite tunnelling, we instead observe diffusive atomic transport, signalling a crossover from quantum to classical expansion dynamics. We compare these observations to the case of static site-energy disorder, where we directly observe quantum localisation.

Suggested Citation

  • Fangzhao Alex An & Eric J. Meier & Bryce Gadway, 2017. "Diffusive and arrested transport of atoms under tailored disorder," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00387-w
    DOI: 10.1038/s41467-017-00387-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-017-00387-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-017-00387-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. S. K. Kanungo & J. D. Whalen & Y. Lu & M. Yuan & S. Dasgupta & F. B. Dunning & K. R. A. Hazzard & T. C. Killian, 2022. "Realizing topological edge states with Rydberg-atom synthetic dimensions," Nature Communications, Nature, vol. 13(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_s41467-017-00387-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.