IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms16098.html
   My bibliography  Save this article

Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene

Author

Listed:
  • Fupin Liu

    (Leibniz Institute for Solid State and Materials Research)

  • Denis S. Krylov

    (Leibniz Institute for Solid State and Materials Research)

  • Lukas Spree

    (Leibniz Institute for Solid State and Materials Research)

  • Stanislav M. Avdoshenko

    (Leibniz Institute for Solid State and Materials Research)

  • Nataliya A. Samoylova

    (Leibniz Institute for Solid State and Materials Research)

  • Marco Rosenkranz

    (Leibniz Institute for Solid State and Materials Research)

  • Aram Kostanyan

    (Physik-Institut der Universität Zürich)

  • Thomas Greber

    (Physik-Institut der Universität Zürich)

  • Anja U. B. Wolter

    (Leibniz Institute for Solid State and Materials Research)

  • Bernd Büchner

    (Leibniz Institute for Solid State and Materials Research)

  • Alexey A. Popov

    (Leibniz Institute for Solid State and Materials Research)

Abstract

Increasing the temperature at which molecules behave as single-molecule magnets is a serious challenge in molecular magnetism. One of the ways to address this problem is to create the molecules with strongly coupled lanthanide ions. In this work, endohedral metallofullerenes Y2@C80 and Dy2@C80 are obtained in the form of air-stable benzyl monoadducts. Both feature an unpaired electron trapped between metal ions, thus forming a single-electron metal-metal bond. Giant exchange interactions between lanthanide ions and the unpaired electron result in single-molecule magnetism of Dy2@C80(CH2Ph) with a record-high 100 s blocking temperature of 18 K. All magnetic moments in Dy2@C80(CH2Ph) are parallel and couple ferromagnetically to form a single spin unit of 21 μB with a dysprosium-electron exchange constant of 32 cm−1. The barrier of the magnetization reversal of 613 K is assigned to the state in which the spin of one Dy centre is flipped.

Suggested Citation

  • Fupin Liu & Denis S. Krylov & Lukas Spree & Stanislav M. Avdoshenko & Nataliya A. Samoylova & Marco Rosenkranz & Aram Kostanyan & Thomas Greber & Anja U. B. Wolter & Bernd Büchner & Alexey A. Popov, 2017. "Single molecule magnet with an unpaired electron trapped between two lanthanide ions inside a fullerene," Nature Communications, Nature, vol. 8(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms16098
    DOI: 10.1038/ncomms16098
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms16098
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms16098?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jie Zhang & Linshan Liu & Chaofeng Zheng & Wang Li & Chunru Wang & Taishan Wang, 2023. "Embedded nano spin sensor for in situ probing of gas adsorption inside porous organic frameworks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Chenli Huang & Rong Sun & Lipiao Bao & Xinyue Tian & Changwang Pan & Mengyang Li & Wangqiang Shen & Kun Guo & Bingwu Wang & Xing Lu & Song Gao, 2023. "A hard molecular nanomagnet from confined paramagnetic 3d-4f spins inside a fullerene cage," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Yingjing Yan & Laura Abella & Rong Sun & Yu-Hui Fang & Yannick Roselló & Yi Shen & Meihe Jin & Antonio Rodríguez-Fortea & Coen Graaf & Qingyu Meng & Yang-Rong Yao & Luis Echegoyen & Bing-Wu Wang & Son, 2023. "Actinide-lanthanide single electron metal-metal bond formed in mixed-valence di-metallofullerenes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms16098. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.