IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15851.html
   My bibliography  Save this article

Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane

Author

Listed:
  • Yonatan Golan

    (Racah Institute of Physics, The Hebrew University)

  • Eilon Sherman

    (Racah Institute of Physics, The Hebrew University)

Abstract

The plasma membrane is a complex medium where transmembrane proteins diffuse and interact to facilitate cell function. Membrane protein mobility is affected by multiple mechanisms, including crowding, trapping, medium elasticity and structure, thus limiting our ability to distinguish them in intact cells. Here we characterize the mobility and organization of a short transmembrane protein at the plasma membrane of live T cells, using single particle tracking and photoactivated-localization microscopy. Protein mobility is highly heterogeneous, subdiffusive and ergodic-like. Using mobility characteristics, we segment individual trajectories into subpopulations with distinct Gaussian step-size distributions. Particles of low-to-medium mobility consist of clusters, diffusing in a viscoelastic and fractal-like medium and are enriched at the centre of the cell footprint. Particles of high mobility undergo weak confinement and are more evenly distributed. This study presents a methodological approach to resolve simultaneous mixed subdiffusion mechanisms acting on polydispersed samples and complex media such as cell membranes.

Suggested Citation

  • Yonatan Golan & Eilon Sherman, 2017. "Resolving mixed mechanisms of protein subdiffusion at the T cell plasma membrane," Nature Communications, Nature, vol. 8(1), pages 1-15, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15851
    DOI: 10.1038/ncomms15851
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15851
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15851?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. dos Santos, M.A.F. & Menon, L. & Cius, D., 2022. "Superstatistical approach of the anomalous exponent for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Nicky Scheefhals & Manon Westra & Harold D. MacGillavry, 2023. "mGluR5 is transiently confined in perisynaptic nanodomains to shape synaptic function," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    3. Faïçal Ndaïrou & Delfim F. M. Torres, 2021. "Pontryagin Maximum Principle for Distributed-Order Fractional Systems," Mathematics, MDPI, vol. 9(16), pages 1-12, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15851. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.