IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v8y2017i1d10.1038_ncomms15448.html
   My bibliography  Save this article

Neuromorphic device architectures with global connectivity through electrolyte gating

Author

Listed:
  • Paschalis Gkoupidenis

    (Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC)

  • Dimitrios A. Koutsouras

    (Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC)

  • George G. Malliaras

    (Ecole Nationale Supérieure des Mines, CMP-EMSE, MOC)

Abstract

Information processing in the brain takes place in a network of neurons that are connected with each other by an immense number of synapses. At the same time, neurons are immersed in a common electrochemical environment, and global parameters such as concentrations of various hormones regulate the overall network function. This computational paradigm of global regulation, also known as homeoplasticity, has important implications in the overall behaviour of large neural ensembles and is barely addressed in neuromorphic device architectures. Here, we demonstrate the global control of an array of organic devices based on poly(3,4ethylenedioxythiophene):poly(styrene sulf) that are immersed in an electrolyte, a behaviour that resembles homeoplasticity phenomena of the neural environment. We use this effect to produce behaviour that is reminiscent of the coupling between local activity and global oscillations in the biological neural networks. We further show that the electrolyte establishes complex connections between individual devices, and leverage these connections to implement coincidence detection. These results demonstrate that electrolyte gating offers significant advantages for the realization of networks of neuromorphic devices of higher complexity and with minimal hardwired connectivity.

Suggested Citation

  • Paschalis Gkoupidenis & Dimitrios A. Koutsouras & George G. Malliaras, 2017. "Neuromorphic device architectures with global connectivity through electrolyte gating," Nature Communications, Nature, vol. 8(1), pages 1-8, August.
  • Handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15448
    DOI: 10.1038/ncomms15448
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms15448
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms15448?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dong Gue Roe & Dong Hae Ho & Yoon Young Choi & Young Jin Choi & Seongchan Kim & Sae Byeok Jo & Moon Sung Kang & Jong-Hyun Ahn & Jeong Ho Cho, 2023. "Humanlike spontaneous motion coordination of robotic fingers through spatial multi-input spike signal multiplexing," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Sophie Griggs & Adam Marks & Dilara Meli & Gonzague Rebetez & Olivier Bardagot & Bryan D. Paulsen & Hu Chen & Karrie Weaver & Mohamad I. Nugraha & Emily A. Schafer & Joshua Tropp & Catherine M. Aitchi, 2022. "The effect of residual palladium on the performance of organic electrochemical transistors," Nature Communications, Nature, vol. 13(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:8:y:2017:i:1:d:10.1038_ncomms15448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.