IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12474.html
   My bibliography  Save this article

Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features

Author

Listed:
  • Kun-Hsing Yu

    (Biomedical Informatics Program, Stanford University
    Stanford University)

  • Ce Zhang

    (Stanford University)

  • Gerald J. Berry

    (Stanford University)

  • Russ B. Altman

    (Biomedical Informatics Program, Stanford University)

  • Christopher Ré

    (Stanford University)

  • Daniel L. Rubin

    (Biomedical Informatics Program, Stanford University)

  • Michael Snyder

    (Stanford University)

Abstract

Lung cancer is the most prevalent cancer worldwide, and histopathological assessment is indispensable for its diagnosis. However, human evaluation of pathology slides cannot accurately predict patients’ prognoses. In this study, we obtain 2,186 haematoxylin and eosin stained histopathology whole-slide images of lung adenocarcinoma and squamous cell carcinoma patients from The Cancer Genome Atlas (TCGA), and 294 additional images from Stanford Tissue Microarray (TMA) Database. We extract 9,879 quantitative image features and use regularized machine-learning methods to select the top features and to distinguish shorter-term survivors from longer-term survivors with stage I adenocarcinoma (P

Suggested Citation

  • Kun-Hsing Yu & Ce Zhang & Gerald J. Berry & Russ B. Altman & Christopher Ré & Daniel L. Rubin & Michael Snyder, 2016. "Predicting non-small cell lung cancer prognosis by fully automated microscopic pathology image features," Nature Communications, Nature, vol. 7(1), pages 1-10, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12474
    DOI: 10.1038/ncomms12474
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12474
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12474?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shidan Wang & Ruichen Rong & Qin Zhou & Donghan M. Yang & Xinyi Zhang & Xiaowei Zhan & Justin Bishop & Zhikai Chi & Clare J. Wilhelm & Siyuan Zhang & Curtis R. Pickering & Mark G. Kris & John Minna & , 2023. "Deep learning of cell spatial organizations identifies clinically relevant insights in tissue images," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Igor Dolgalev & Hua Zhou & Nina Murrell & Hortense Le & Theodore Sakellaropoulos & Nicolas Coudray & Kelsey Zhu & Varshini Vasudevaraja & Anna Yeaton & Chandra Goparaju & Yonghua Li & Imran Sulaiman &, 2023. "Inflammation in the tumor-adjacent lung as a predictor of clinical outcome in lung adenocarcinoma," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Pei-Chen Tsai & Tsung-Hua Lee & Kun-Chi Kuo & Fang-Yi Su & Tsung-Lu Michael Lee & Eliana Marostica & Tomotaka Ugai & Melissa Zhao & Mai Chan Lau & Juha P. Väyrynen & Marios Giannakis & Yasutoshi Takas, 2023. "Histopathology images predict multi-omics aberrations and prognoses in colorectal cancer patients," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    4. Gil Shamai & Amir Livne & António Polónia & Edmond Sabo & Alexandra Cretu & Gil Bar-Sela & Ron Kimmel, 2022. "Deep learning-based image analysis predicts PD-L1 status from H&E-stained histopathology images in breast cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    5. Dexin Chen & Meiting Fu & Liangjie Chi & Liyan Lin & Jiaxin Cheng & Weisong Xue & Chenyan Long & Wei Jiang & Xiaoyu Dong & Jian Sui & Dajia Lin & Jianping Lu & Shuangmu Zhuo & Side Liu & Guoxin Li & G, 2022. "Prognostic and predictive value of a pathomics signature in gastric cancer," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    6. Stephen F Weng & Luis Vaz & Nadeem Qureshi & Joe Kai, 2019. "Prediction of premature all-cause mortality: A prospective general population cohort study comparing machine-learning and standard epidemiological approaches," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-22, March.
    7. Lida Qiu & Deyong Kang & Chuan Wang & Wenhui Guo & Fangmeng Fu & Qingxiang Wu & Gangqin Xi & Jiajia He & Liqin Zheng & Qingyuan Zhang & Xiaoxia Liao & Lianhuang Li & Jianxin Chen & Haohua Tu, 2022. "Intratumor graph neural network recovers hidden prognostic value of multi-biomarker spatial heterogeneity," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12474. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.