IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms12322.html
   My bibliography  Save this article

Drosophila melanogaster females restore their attractiveness after mating by removing male anti-aphrodisiac pheromones

Author

Listed:
  • Meghan Laturney

    (Groningen Institute for Evolutionary Life Sciences, University of Groningen)

  • Jean-Christophe Billeter

    (Groningen Institute for Evolutionary Life Sciences, University of Groningen)

Abstract

Males from many species ensure paternity by preventing their mates from copulating with other males. One mate-guarding strategy involves marking females with anti-aphrodisiac pheromones (AAPs), which reduces the females’ attractiveness and dissuades other males from courting. Since females benefit from polyandry, sexual conflict theory predicts that females should develop mechanisms to counteract AAPs to achieve additional copulations, but no such mechanisms have been documented. Here we show that during copulation Drosophila melanogaster males transfer two AAPs: cis-Vaccenyl Acetate (cVA) to the females’ reproductive tract, and 7-Tricosene (7-T) to the females’ cuticle. A few hours after copulation, females actively eject cVA from their reproductive tract, which results in increased attractiveness and re-mating. Although 7-T remains on those females, we show that it is the combination of the two chemicals that reduces attractiveness. To our knowledge, female AAP ejection provides the first example of a female mechanism that counter-acts chemical mate-guarding.

Suggested Citation

  • Meghan Laturney & Jean-Christophe Billeter, 2016. "Drosophila melanogaster females restore their attractiveness after mating by removing male anti-aphrodisiac pheromones," Nature Communications, Nature, vol. 7(1), pages 1-11, November.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12322
    DOI: 10.1038/ncomms12322
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms12322
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms12322?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thomas A. Verschut & Renny Ng & Nicolas P. Doubovetzky & Guillaume Calvez & Jan L. Sneep & Adriaan J. Minnaard & Chih-Ying Su & Mikael A. Carlsson & Bregje Wertheim & Jean-Christophe Billeter, 2023. "Aggregation pheromones have a non-linear effect on oviposition behavior in Drosophila melanogaster," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Nan-Ji Jiang & Xinqi Dong & Daniel Veit & Bill S. Hansson & Markus Knaden, 2024. "Elevated ozone disrupts mating boundaries in drosophilid flies," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms12322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.