IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v7y2016i1d10.1038_ncomms10333.html
   My bibliography  Save this article

Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments

Author

Listed:
  • Remy Chait

    (Harvard Medical School
    Institute of Science and Technology)

  • Adam C. Palmer

    (Harvard Medical School)

  • Idan Yelin

    (Faculty of Biology, Technion, Israel Institute of Technology)

  • Roy Kishony

    (Harvard Medical School
    Faculty of Biology, Technion, Israel Institute of Technology)

Abstract

Antibiotic-sensitive and -resistant bacteria coexist in natural environments with low, if detectable, antibiotic concentrations. Except possibly around localized antibiotic sources, where resistance can provide a strong advantage, bacterial fitness is dominated by stresses unaffected by resistance to the antibiotic. How do such mixed and heterogeneous conditions influence the selective advantage or disadvantage of antibiotic resistance? Here we find that sub-inhibitory levels of tetracyclines potentiate selection for or against tetracycline resistance around localized sources of almost any toxin or stress. Furthermore, certain stresses generate alternating rings of selection for and against resistance around a localized source of the antibiotic. In these conditions, localized antibiotic sources, even at high strengths, can actually produce a net selection against resistance to the antibiotic. Our results show that interactions between the effects of an antibiotic and other stresses in inhomogeneous environments can generate pervasive, complex patterns of selection both for and against antibiotic resistance.

Suggested Citation

  • Remy Chait & Adam C. Palmer & Idan Yelin & Roy Kishony, 2016. "Pervasive selection for and against antibiotic resistance in inhomogeneous multistress environments," Nature Communications, Nature, vol. 7(1), pages 1-8, April.
  • Handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10333
    DOI: 10.1038/ncomms10333
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms10333
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms10333?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nghe, Philippe & Mulder, Bela M. & Tans, Sander J., 2018. "A graph-based algorithm for the multi-objective optimization of gene regulatory networks," European Journal of Operational Research, Elsevier, vol. 270(2), pages 784-793.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:7:y:2016:i:1:d:10.1038_ncomms10333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.