IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v6y2015i1d10.1038_ncomms9512.html
   My bibliography  Save this article

Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons

Author

Listed:
  • Yanmei Qi

    (Sensory Mechanotransduction, Centre for Integrative Neuroscience)

  • Laura Andolfi

    (Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche)

  • Flavia Frattini

    (Sensory Mechanotransduction, Centre for Integrative Neuroscience)

  • Florian Mayer

    (Sensory Mechanotransduction, Centre for Integrative Neuroscience)

  • Marco Lazzarino

    (Istituto Officina dei Materiali Consiglio Nazionale delle Ricerche)

  • Jing Hu

    (Sensory Mechanotransduction, Centre for Integrative Neuroscience)

Abstract

Sensing force is crucial to maintain the viability of all living cells. Despite its fundamental importance, how force is sensed at the molecular level remains largely unknown. Here we show that stomatin-like protein-3 (STOML3) controls membrane mechanics by binding cholesterol and thus facilitates force transfer and tunes the sensitivity of mechano-gated channels, including Piezo channels. STOML3 is detected in cholesterol-rich lipid rafts. In mouse sensory neurons, depletion of cholesterol and deficiency of STOML3 similarly and interdependently attenuate mechanosensitivity while modulating membrane mechanics. In heterologous systems, intact STOML3 is required to maintain membrane mechanics to sensitize Piezo1 and Piezo2 channels. In C57BL/6N, but not STOML3−/− mice, tactile allodynia is attenuated by cholesterol depletion, suggesting that membrane stiffening by STOML3 is essential for mechanical sensitivity. Targeting the STOML3–cholesterol association might offer an alternative strategy for control of chronic pain.

Suggested Citation

  • Yanmei Qi & Laura Andolfi & Flavia Frattini & Florian Mayer & Marco Lazzarino & Jing Hu, 2015. "Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons," Nature Communications, Nature, vol. 6(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9512
    DOI: 10.1038/ncomms9512
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms9512
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms9512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Martina Nicoletti & Letizia Chiodo & Alessandro Loppini, 2021. "Biophysics and Modeling of Mechanotransduction in Neurons: A Review," Mathematics, MDPI, vol. 9(4), pages 1-32, February.
    2. Max Lundberg & Alexander Mackintosh & Anna Petri & Staffan Bensch, 2023. "Inversions maintain differences between migratory phenotypes of a songbird," Nature Communications, Nature, vol. 14(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:6:y:2015:i:1:d:10.1038_ncomms9512. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.