IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6771.html
   My bibliography  Save this article

Connecting high-field quantum oscillations to zero-field electron spectral functions in the underdoped cuprates

Author

Listed:
  • Andrea Allais

    (Harvard University)

  • Debanjan Chowdhury

    (Harvard University)

  • Subir Sachdev

    (Perimeter Institute for Theoretical Physics)

Abstract

The nature of the pseudogap regime of cuprate superconductors at low hole density remains unresolved. It has a number of seemingly distinct experimental signatures: a suppression of the paramagnetic spin susceptibility at high temperatures, low-energy electronic excitations that extend over arcs in the Brillouin zone, X-ray detection of charge-density wave order at intermediate temperatures and quantum oscillations at high magnetic fields and low temperatures. Here we show that a model of competing charge-density wave and superconducting orders provides a unified description of the intermediate and low-temperature regimes. We treat quantum oscillations at high field beyond semiclassical approximations, and find clear and robust signatures of an electron pocket compatible with existing observations; we also predict oscillations due to additional hole pockets. In the zero-field and intermediate temperature regime, we compute the electronic spectrum in the presence of thermally fluctuating charge-density and superconducting orders. Our results are compatible with experimental trends.

Suggested Citation

  • Andrea Allais & Debanjan Chowdhury & Subir Sachdev, 2014. "Connecting high-field quantum oscillations to zero-field electron spectral functions in the underdoped cuprates," Nature Communications, Nature, vol. 5(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6771
    DOI: 10.1038/ncomms6771
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6771
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6771?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.