IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6404.html
   My bibliography  Save this article

Solution-processed hybrid perovskite photodetectors with high detectivity

Author

Listed:
  • Letian Dou

    (University of California
    California NanoSystems Institute, University of California)

  • Yang (Micheal) Yang

    (University of California)

  • Jingbi You

    (University of California)

  • Ziruo Hong

    (University of California)

  • Wei-Hsuan Chang

    (University of California
    California NanoSystems Institute, University of California)

  • Gang Li

    (University of California)

  • Yang Yang

    (University of California
    California NanoSystems Institute, University of California)

Abstract

Photodetectors capture optical signals with a wide range of incident photon flux density and convert them to electrical signals instantaneously. They have many important applications including imaging, optical communication, remote control, chemical/biological sensing and so on. Currently, GaN, Si and InGaAs photodetectors are used in commercially available products. Here we demonstrate a novel solution-processed photodetector based on an organic–inorganic hybrid perovskite material. Operating at room temperature, the photodetectors exhibit a large detectivity (the ability to detect weak signals) approaching 1014 Jones, a linear dynamic range over 100 decibels (dB) and a fast photoresponse with 3-dB bandwidth up to 3 MHz. The performance is significantly better than most of the organic, quantum dot and hybrid photodetectors reported so far; and is comparable, or even better than, the traditional inorganic semiconductor-based photodetectors. Our results indicate that with proper device interface design, perovskite materials are promising candidates for low-cost, high-performance photodetectors.

Suggested Citation

  • Letian Dou & Yang (Micheal) Yang & Jingbi You & Ziruo Hong & Wei-Hsuan Chang & Gang Li & Yang Yang, 2014. "Solution-processed hybrid perovskite photodetectors with high detectivity," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6404
    DOI: 10.1038/ncomms6404
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6404
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yingjie Tang & Peng Jin & Yan Wang & Dingwei Li & Yitong Chen & Peng Ran & Wei Fan & Kun Liang & Huihui Ren & Xuehui Xu & Rui Wang & Yang (Michael) Yang & Bowen Zhu, 2023. "Enabling low-drift flexible perovskite photodetectors by electrical modulation for wearable health monitoring and weak light imaging," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Luyao Zheng & Amin Nozariasbmarz & Yuchen Hou & Jungjin Yoon & Wenjie Li & Yu Zhang & Haodong Wu & Dong Yang & Tao Ye & Mohan Sanghadasa & Ke Wang & Bed Poudel & Shashank Priya & Kai Wang, 2022. "A universal all-solid synthesis for high throughput production of halide perovskite," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Tianju Zhang & Chaocheng Zhou & Xuezhen Feng & Ningning Dong & Hong Chen & Xianfeng Chen & Long Zhang & Jia Lin & Jun Wang, 2022. "Regulation of the luminescence mechanism of two-dimensional tin halide perovskites," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Kyeong-Yoon Baek & Woocheol Lee & Jonghoon Lee & Jaeyoung Kim & Heebeom Ahn & Jae Il Kim & Junwoo Kim & Hyungbin Lim & Jiwon Shin & Yoon-Joo Ko & Hyeon-Dong Lee & Richard H. Friend & Tae-Woo Lee & Jeo, 2022. "Mechanochemistry-driven engineering of 0D/3D heterostructure for designing highly luminescent Cs–Pb–Br perovskites," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Seongchan Kim & Yoon Young Choi & Taewan Kim & Yong Min Kim & Dong Hae Ho & Young Jin Choi & Dong Gue Roe & Ju-Hee Lee & Joongpill Park & Ji-Woong Choi & Jeong Won Kim & Jin-Hong Park & Sae Byeok Jo &, 2022. "A biomimetic ocular prosthesis system: emulating autonomic pupil and corneal reflections," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    6. Huihui Zhu & Ao Liu & Kyu In Shim & Haksoon Jung & Taoyu Zou & Youjin Reo & Hyunjun Kim & Jeong Woo Han & Yimu Chen & Hye Yong Chu & Jun Hyung Lim & Hyung-Jun Kim & Sai Bai & Yong-Young Noh, 2022. "High-performance hysteresis-free perovskite transistors through anion engineering," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.