IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms6252.html
   My bibliography  Save this article

Superficial layer pyramidal cells communicate heterogeneously between multiple functional domains of cat primary visual cortex

Author

Listed:
  • Kevan A. C. Martin

    (Institute of Neuroinformatics, UZH/ETH)

  • Stephan Roth

    (Institute of Neuroinformatics, UZH/ETH)

  • Elisha S. Rusch

    (Institute of Neuroinformatics, UZH/ETH)

Abstract

The axons of pyramidal neurons in the superficial layers of the neocortex of higher mammals form lateral networks of discrete clusters of synaptic boutons. In primary visual cortex the clusters are reported to link domains that share the same orientation preferences, but how individual neurons contribute to this network is unknown. Here we performed optical imaging to record the intrinsic signal, which is an indirect measure of neuronal firing, and determined the global map of orientation preferences in the cat primary visual system. In the same experiment, single cells were recorded and labelled intracellularly. We found that individual axons arborise within the retinotopic representation of the classical receptive field, but their bouton clusters were not aligned along their preferred axis of orientation along the retinotopic map. Axon clusters formed in a variety of different orientation domains, not just the like-orientation domains. This topography and heterogeneity of single-cell connectivity provides circuits for normalization and context-dependent feature processing of visual scenes.

Suggested Citation

  • Kevan A. C. Martin & Stephan Roth & Elisha S. Rusch, 2014. "Superficial layer pyramidal cells communicate heterogeneously between multiple functional domains of cat primary visual cortex," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6252
    DOI: 10.1038/ncomms6252
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms6252
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms6252?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James Rankin & Frédéric Chavane, 2017. "Neural field model to reconcile structure with function in primary visual cortex," PLOS Computational Biology, Public Library of Science, vol. 13(10), pages 1-30, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms6252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.