IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v5y2014i1d10.1038_ncomms5879.html
   My bibliography  Save this article

Steroid hormone signalling links reproduction to lifespan in dietary-restricted Caenorhabditis elegans

Author

Listed:
  • Manjunatha Thondamal

    (Molecular Biology of the Cell Laboratory, Ecole Normale Supérieure de Lyon—CNRS—Université de Lyon Claude Bernard, UMR5239, 46, Allee d’Italie)

  • Michael Witting

    (Ingolstaedter Landstrasse 1)

  • Philippe Schmitt-Kopplin

    (Ingolstaedter Landstrasse 1)

  • Hugo Aguilaniu

    (Molecular Biology of the Cell Laboratory, Ecole Normale Supérieure de Lyon—CNRS—Université de Lyon Claude Bernard, UMR5239, 46, Allee d’Italie)

Abstract

Dietary restriction (DR) increases healthspan and longevity in many species, including primates, but it is often accompanied by impaired reproductive function. Whether signals associated with the reproductive system contribute to or are required for DR effects on lifespan has not been established. Here we show that expression of the cytochrome P450 DAF-9/CYP450 and production of the steroid hormone Δ7-dafachronic acid (DA) are increased in C. elegans subjected to DR. DA signalling through the non-canonical nuclear hormone receptor NHR-8/NHR and the nutrient-responsive kinase let-363/mTOR is essential for DR-mediated longevity. Steroid signalling also affects germline plasticity in response to nutrient deprivation and this is required to achieve lifespan extension. These data demonstrate that steroid signalling links germline physiology to lifespan when nutrients are limited, and establish a central role for let-363/mTOR in integrating signals derived from nutrients and steroid hormones.

Suggested Citation

  • Manjunatha Thondamal & Michael Witting & Philippe Schmitt-Kopplin & Hugo Aguilaniu, 2014. "Steroid hormone signalling links reproduction to lifespan in dietary-restricted Caenorhabditis elegans," Nature Communications, Nature, vol. 5(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5879
    DOI: 10.1038/ncomms5879
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms5879
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms5879?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sarah R. Fausett & Asma Sandjak & Bénédicte Billard & Christian Braendle, 2023. "Higher-order epistasis shapes natural variation in germ stem cell niche activity," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Shengjie Fan & Yingxuan Yan & Ying Xia & Zhenyu Zhou & Lingling Luo & Mengnan Zhu & Yongli Han & Deqiang Yao & Lijun Zhang & Minglv Fang & Lina Peng & Jing Yu & Ying Liu & Xiaoyan Gao & Huida Guan & H, 2023. "Pregnane X receptor agonist nomilin extends lifespan and healthspan in preclinical models through detoxification functions," Nature Communications, Nature, vol. 14(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:5:y:2014:i:1:d:10.1038_ncomms5879. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.