IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v2y2011i1d10.1038_ncomms1353.html
   My bibliography  Save this article

Statistically induced phase transitions and anyons in 1D optical lattices

Author

Listed:
  • Tassilo Keilmann

    (Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München
    Max-Planck-Institut für Quantenoptik)

  • Simon Lanzmich

    (Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München)

  • Ian McCulloch

    (The University of Queensland)

  • Marco Roncaglia

    (Arnold Sommerfeld Center for Theoretical Physics, Ludwig-Maximilians-Universität München
    Max-Planck-Institut für Quantenoptik
    Dipartimento di Fisica del Politecnico)

Abstract

Anyons—particles carrying fractional statistics that interpolate between bosons and fermions—have been conjectured to exist in low-dimensional systems. In the context of the fractional quantum Hall effect, quasi-particles made of electrons take the role of anyons whose statistical exchange phase is fixed by the filling factor. Here we propose an experimental setup to create anyons in one-dimensional lattices with fully tuneable exchange statistics. In our setup, anyons are created by bosons with occupation-dependent hopping amplitudes, which can be realized by assisted Raman tunnelling. The statistical angle can thus be controlled in situ by modifying the relative phase of external driving fields. This opens the fascinating possibility of smoothly transmuting bosons via anyons into fermions and of inducing a phase transition by the mere control of the particle statistics as a free parameter. In particular, we demonstrate how to induce a quantum phase transition from a superfluid into an exotic Mott-like state where the particle distribution exhibits plateaus at fractional densities.

Suggested Citation

  • Tassilo Keilmann & Simon Lanzmich & Ian McCulloch & Marco Roncaglia, 2011. "Statistically induced phase transitions and anyons in 1D optical lattices," Nature Communications, Nature, vol. 2(1), pages 1-7, September.
  • Handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1353
    DOI: 10.1038/ncomms1353
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/ncomms1353
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/ncomms1353?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Weixuan Zhang & Hao Yuan & Haiteng Wang & Fengxiao Di & Na Sun & Xingen Zheng & Houjun Sun & Xiangdong Zhang, 2022. "Observation of Bloch oscillations dominated by effective anyonic particle statistics," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Vasiuta, Yanina & Rovenchak, Andrij, 2018. "Modeling free anyons at the bosonic and fermionic ends," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 490(C), pages 918-927.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:2:y:2011:i:1:d:10.1038_ncomms1353. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.