IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47637-2.html
   My bibliography  Save this article

Re-order parameter of interacting thermodynamic magnets

Author

Listed:
  • Byung Cheol Park

    (Sungkyunkwan University
    Sungkyunkwan University)

  • Howon Lee

    (Yonsei University
    Korea Institute of Science and Technology (KIST))

  • Sang Hyup Oh

    (Yonsei University)

  • Hyun Jun Shin

    (Yonsei University)

  • Young Jai Choi

    (Yonsei University)

  • Taewoo Ha

    (Sungkyunkwan University
    Sungkyunkwan University)

Abstract

Phase diagrams of materials are typically based on a static order parameter, but it faces challenges when distinguishing subtle phase changes, such as re-ordering. Here, we report a dynamic nonequilibrium order parameter termed re-order parameter to determine subtle phases and their transitions in interacting magnets. The dynamical precession of magnetization, so-called magnon, premises as a reliable re-order parameter of strong spin-orbit coupled magnets. We employ orthoferrites YFeO3 and its Mn-doped variations, where diverse magnetic phases, including canted antiferromagnetic (Γ4) and collinear antiferromagnetic (Γ1) states, have been well-established. Low-energy magnon uncovers the spin-orbit coupling-induced subtle magnetic structures, resulting in distinct terahertz emissions. The temporal and spectral parameters of magnon emission exhibit characteristics akin to BCS-type order parameters, constructing the magnetic phase diagram of Mn-doped YFeO3. This approach further reveals a concealed ferrimagnetic phase within the Γ1 state, underscoring its potential to search for hidden phases of materials, completing their phase diagrams.

Suggested Citation

  • Byung Cheol Park & Howon Lee & Sang Hyup Oh & Hyun Jun Shin & Young Jai Choi & Taewoo Ha, 2024. "Re-order parameter of interacting thermodynamic magnets," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47637-2
    DOI: 10.1038/s41467-024-47637-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47637-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47637-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Takuma Makihara & Kenji Hayashida & G. Timothy Noe II & Xinwei Li & Nicolas Marquez Peraca & Xiaoxuan Ma & Zuanming Jin & Wei Ren & Guohong Ma & Ikufumi Katayama & Jun Takeda & Hiroyuki Nojiri & Dmitr, 2021. "Ultrastrong magnon–magnon coupling dominated by antiresonant interactions," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    2. Shubhankar Das & A. Ross & X. X. Ma & S. Becker & C. Schmitt & F. Duijn & E. F. Galindez-Ruales & F. Fuhrmann & M.-A. Syskaki & U. Ebels & V. Baltz & A.-L. Barra & H. Y. Chen & G. Jakob & S. X. Cao & , 2022. "Anisotropic long-range spin transport in canted antiferromagnetic orthoferrite YFeO3," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Couture & Wei Cui & Markus Lippl & Rachel Ostic & Défi Junior Jubgang Fandio & Eeswar Kumar Yalavarthi & Aswin Vishnuradhan & Angela Gamouras & Nicolas Y. Joly & Jean-Michel Ménard, 2023. "Single-pulse terahertz spectroscopy monitoring sub-millisecond time dynamics at a rate of 50 kHz," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    2. Yuqiang Wang & Yu Zhang & Chaozhong Li & Jinwu Wei & Bin He & Hongjun Xu & Jihao Xia & Xuming Luo & Jiahui Li & Jing Dong & Wenqing He & Zhengren Yan & Wenlong Yang & Fusheng Ma & Guozhi Chai & Peng Y, 2024. "Ultrastrong to nearly deep-strong magnon-magnon coupling with a high degree of freedom in synthetic antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47637-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.