IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47540-w.html
   My bibliography  Save this article

Using strain to uncover the interplay between two- and three-dimensional charge density waves in high-temperature superconducting YBa2Cu3Oy

Author

Listed:
  • I. Vinograd

    (Karlsruhe Institute of Technology
    University of Göttingen)

  • S. M. Souliou

    (Karlsruhe Institute of Technology)

  • A.-A. Haghighirad

    (Karlsruhe Institute of Technology)

  • T. Lacmann

    (Karlsruhe Institute of Technology)

  • Y. Caplan

    (The Hebrew University)

  • M. Frachet

    (Karlsruhe Institute of Technology)

  • M. Merz

    (Karlsruhe Institute of Technology
    Karlsruhe Institute of Technology)

  • G. Garbarino

    (The European Synchrotron)

  • Y. Liu

    (Max Planck Institute for Solid State Research)

  • S. Nakata

    (Max Planck Institute for Solid State Research)

  • K. Ishida

    (Max Planck Institute for Chemical Physics of Solids
    Tohoku University)

  • H. M. L. Noad

    (Max Planck Institute for Chemical Physics of Solids)

  • M. Minola

    (Max Planck Institute for Solid State Research)

  • B. Keimer

    (Max Planck Institute for Solid State Research)

  • D. Orgad

    (The Hebrew University)

  • C. W. Hicks

    (Max Planck Institute for Chemical Physics of Solids
    University of Birmingham)

  • M. Tacon

    (Karlsruhe Institute of Technology)

Abstract

Uniaxial pressure provides an efficient approach to control charge density waves in YBa2Cu3Oy. It can enhance the correlation volume of ubiquitous short-range two-dimensional charge-density-wave correlations, and induces a long-range three-dimensional charge density wave, otherwise only accessible at large magnetic fields. Here, we use x-ray diffraction to study the strain dependence of these charge density waves and uncover direct evidence for a form of competition between them. We show that this interplay is qualitatively described by including strain effects in a nonlinear sigma model of competing superconducting and charge-density-wave orders. Our analysis suggests that strain stabilizes the 3D charge density wave in the regions between disorder-pinned domains of 2D charge density waves, and that the two orders compete at the boundaries of these domains. No signatures of discommensurations nor of pair density waves are observed. From a broader perspective, our results underscore the potential of strain tuning as a powerful tool for probing competing orders in quantum materials.

Suggested Citation

  • I. Vinograd & S. M. Souliou & A.-A. Haghighirad & T. Lacmann & Y. Caplan & M. Frachet & M. Merz & G. Garbarino & Y. Liu & S. Nakata & K. Ishida & H. M. L. Noad & M. Minola & B. Keimer & D. Orgad & C. , 2024. "Using strain to uncover the interplay between two- and three-dimensional charge density waves in high-temperature superconducting YBa2Cu3Oy," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47540-w
    DOI: 10.1038/s41467-024-47540-w
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47540-w
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47540-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tao Wu & Hadrien Mayaffre & Steffen Krämer & Mladen Horvatić & Claude Berthier & Philip L. Kuhns & Arneil P. Reyes & Ruixing Liang & W. N. Hardy & D. A. Bonn & Marc-Henri Julien, 2013. "Emergence of charge order from the vortex state of a high-temperature superconductor," Nature Communications, Nature, vol. 4(1), pages 1-6, October.
    2. J. Choi & O. Ivashko & E. Blackburn & R. Liang & D. A. Bonn & W. N. Hardy & A. T. Holmes & N. B. Christensen & M. Hücker & S. Gerber & O. Gutowski & U. Rütt & M. v. Zimmermann & E. M. Forgan & S. M. H, 2020. "Spatially inhomogeneous competition between superconductivity and the charge density wave in YBa2Cu3O6.67," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    3. Tao Wu & Hadrien Mayaffre & Steffen Krämer & Mladen Horvatić & Claude Berthier & W. N. Hardy & Ruixing Liang & D. A. Bonn & Marc-Henri Julien, 2011. "Magnetic-field-induced charge-stripe order in the high-temperature superconductor YBa2Cu3Oy," Nature, Nature, vol. 477(7363), pages 191-194, September.
    4. Qisi Wang & K. Arx & D. G. Mazzone & S. Mustafi & M. Horio & J. Küspert & J. Choi & D. Bucher & H. Wo & J. Zhao & W. Zhang & T. C. Asmara & Y. Sassa & M. Månsson & N. B. Christensen & M. Janoschek & T, 2022. "Uniaxial pressure induced stripe order rotation in La1.88Sr0.12CuO4," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Igor Vinograd & Rui Zhou & Michihiro Hirata & Tao Wu & Hadrien Mayaffre & Steffen Krämer & Ruixing Liang & W. N. Hardy & D. A. Bonn & Marc-Henri Julien, 2021. "Locally commensurate charge-density wave with three-unit-cell periodicity in YBa2Cu3Oy," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    6. E. M. Forgan & E. Blackburn & A. T. Holmes & A. K. R. Briffa & J. Chang & L. Bouchenoire & S. D. Brown & Ruixing Liang & D. Bonn & W. N. Hardy & N. B. Christensen & M. V. Zimmermann & M. Hücker & S. M, 2015. "The microscopic structure of charge density waves in underdoped YBa2Cu3O6.54 revealed by X-ray diffraction," Nature Communications, Nature, vol. 6(1), pages 1-7, December.
    7. C. C. Tam & M. Zhu & J. Ayres & K. Kummer & F. Yakhou-Harris & J. R. Cooper & A. Carrington & S. M. Hayden, 2022. "Charge density waves and Fermi surface reconstruction in the clean overdoped cuprate superconductor Tl2Ba2CuO6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Tao Wu & Hadrien Mayaffre & Steffen Krämer & Mladen Horvatić & Claude Berthier & W.N. Hardy & Ruixing Liang & D.A. Bonn & Marc-Henri Julien, 2015. "Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy," Nature Communications, Nature, vol. 6(1), pages 1-9, May.
    9. W. Tabis & Y. Li & M. Le Tacon & L. Braicovich & A. Kreyssig & M. Minola & G. Dellea & E. Weschke & M. J. Veit & M. Ramazanoglu & A. I. Goldman & T. Schmitt & G. Ghiringhelli & N. Barišić & M. K. Chan, 2014. "Charge order and its connection with Fermi-liquid charge transport in a pristine high-Tc cuprate," Nature Communications, Nature, vol. 5(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alejandro Ruiz & Brandon Gunn & Yi Lu & Kalyan Sasmal & Camilla M. Moir & Rourav Basak & Hai Huang & Jun-Sik Lee & Fanny Rodolakis & Timothy J. Boyle & Morgan Walker & Yu He & Santiago Blanco-Canosa &, 2022. "Stabilization of three-dimensional charge order through interplanar orbital hybridization in PrxY1−xBa2Cu3O6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. C. C. Tam & M. Zhu & J. Ayres & K. Kummer & F. Yakhou-Harris & J. R. Cooper & A. Carrington & S. M. Hayden, 2022. "Charge density waves and Fermi surface reconstruction in the clean overdoped cuprate superconductor Tl2Ba2CuO6+δ," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    3. Peizhi Mai & Nathan S. Nichols & Seher Karakuzu & Feng Bao & Adrian Del Maestro & Thomas A. Maier & Steven Johnston, 2023. "Robust charge-density-wave correlations in the electron-doped single-band Hubbard model," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. V. Oliviero & S. Benhabib & I. Gilmutdinov & B. Vignolle & L. Drigo & M. Massoudzadegan & M. Leroux & G. L. J. A. Rikken & A. Forget & D. Colson & D. Vignolles & C. Proust, 2022. "Magnetotransport signatures of antiferromagnetism coexisting with charge order in the trilayer cuprate HgBa2Ca2Cu3O8+δ," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Can-Li Song & Elizabeth J. Main & Forrest Simmons & Shuo Liu & Benjamin Phillabaum & Karin A. Dahmen & Eric W. Hudson & Jennifer E. Hoffman & Erica W. Carlson, 2023. "Critical nematic correlations throughout the superconducting doping range in Bi2−zPbzSr2−yLayCuO6+x," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. C. D. Dashwood & A. H. Walker & M. P. Kwasigroch & L. S. I. Veiga & Q. Faure & J. G. Vale & D. G. Porter & P. Manuel & D. D. Khalyavin & F. Orlandi & C. V. Colin & O. Fabelo & F. Krüger & R. S. Perry , 2023. "Strain control of a bandwidth-driven spin reorientation in Ca3Ru2O7," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    7. Menghan Liao & Yuying Zhu & Shuxu Hu & Ruidan Zhong & John Schneeloch & Genda Gu & Ding Zhang & Qi-Kun Xue, 2022. "Little-Parks like oscillations in lightly doped cuprate superconductors," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Rustem Khasanov & Bin-Bin Ruan & Yun-Qing Shi & Gen-Fu Chen & Hubertus Luetkens & Zhi-An Ren & Zurab Guguchia, 2024. "Tuning of the flat band and its impact on superconductivity in Mo5Si3−xPx," Nature Communications, Nature, vol. 15(1), pages 1-6, December.
    9. Lichen Wang & Guanhong He & Zichen Yang & Mirian Garcia-Fernandez & Abhishek Nag & Kejin Zhou & Matteo Minola & Matthieu Le Tacon & Bernhard Keimer & Yingying Peng & Yuan Li, 2022. "Paramagnons and high-temperature superconductivity in a model family of cuprates," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47540-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.