IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47046-5.html
   My bibliography  Save this article

Cholesterol-binding motifs in STING that control endoplasmic reticulum retention mediate anti-tumoral activity of cholesterol-lowering compounds

Author

Listed:
  • Bao-cun Zhang

    (Aarhus University)

  • Marlene F. Laursen

    (Aalborg University)

  • Lili Hu

    (Aarhus University)

  • Hossein Hazrati

    (Aarhus University
    Aarhus University)

  • Ryo Narita

    (Aarhus University)

  • Lea S. Jensen

    (Aarhus University)

  • Aida S. Hansen

    (Aarhus University)

  • Jinrong Huang

    (University of Copenhagen)

  • Yan Zhang

    (Aarhus University)

  • Xiangning Ding

    (Aarhus University)

  • Maimaitili Muyesier

    (Aarhus University)

  • Emil Nilsson

    (Aarhus University)

  • Agnieszka Banasik

    (Aalborg University)

  • Christina Zeiler

    (Aalborg University)

  • Trine H. Mogensen

    (Aarhus University
    Aarhus University Hospital)

  • Anders Etzerodt

    (Aarhus University)

  • Ralf Agger

    (Aalborg University)

  • Mogens Johannsen

    (Aarhus University)

  • Emil Kofod-Olsen

    (Aalborg University)

  • Søren R. Paludan

    (Aarhus University)

  • Martin R. Jakobsen

    (Aarhus University)

Abstract

The cGAS-STING pathway plays a crucial role in anti-tumoral responses by activating inflammation and reprogramming the tumour microenvironment. Upon activation, STING traffics from the endoplasmic reticulum (ER) to Golgi, allowing signalling complex assembly and induction of interferon and inflammatory cytokines. Here we report that cGAMP stimulation leads to a transient decline in ER cholesterol levels, mediated by Sterol O-Acyltransferase 1-dependent cholesterol esterification. This facilitates ER membrane curvature and STING trafficking to Golgi. Notably, we identify two cholesterol-binding motifs in STING and confirm their contribution to ER-retention of STING. Consequently, depletion of intracellular cholesterol levels enhances STING pathway activation upon cGAMP stimulation. In a preclinical tumour model, intratumorally administered cholesterol depletion therapy potentiated STING-dependent anti-tumoral responses, which, in combination with anti-PD-1 antibodies, promoted tumour remission. Collectively, we demonstrate that ER cholesterol sets a threshold for STING signalling through cholesterol-binding motifs in STING and we propose that this could be exploited for cancer immunotherapy.

Suggested Citation

  • Bao-cun Zhang & Marlene F. Laursen & Lili Hu & Hossein Hazrati & Ryo Narita & Lea S. Jensen & Aida S. Hansen & Jinrong Huang & Yan Zhang & Xiangning Ding & Maimaitili Muyesier & Emil Nilsson & Agniesz, 2024. "Cholesterol-binding motifs in STING that control endoplasmic reticulum retention mediate anti-tumoral activity of cholesterol-lowering compounds," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47046-5
    DOI: 10.1038/s41467-024-47046-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47046-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47046-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dara L. Burdette & Kathryn M. Monroe & Katia Sotelo-Troha & Jeff S. Iwig & Barbara Eckert & Mamoru Hyodo & Yoshihiro Hayakawa & Russell E. Vance, 2011. "STING is a direct innate immune sensor of cyclic di-GMP," Nature, Nature, vol. 478(7370), pages 515-518, October.
    2. Ting-Ting Chu & Xintao Tu & Kun Yang & Jianjun Wu & Joyce J. Repa & Nan Yan, 2021. "Tonic prime-boost of STING signalling mediates Niemann–Pick disease type C," Nature, Nature, vol. 596(7873), pages 570-575, August.
    3. Guijun Shang & Conggang Zhang & Zhijian J. Chen & Xiao-chen Bai & Xuewu Zhang, 2019. "Cryo-EM structures of STING reveal its mechanism of activation by cyclic GMP–AMP," Nature, Nature, vol. 567(7748), pages 389-393, March.
    4. Baoyu Zhao & Fenglei Du & Pengbiao Xu & Chang Shu & Banumathi Sankaran & Samantha L. Bell & Mengmeng Liu & Yuanjiu Lei & Xinsheng Gao & Xiaofeng Fu & Fanxiu Zhu & Yang Liu & Arthur Laganowsky & Xueyun, 2019. "A conserved PLPLRT/SD motif of STING mediates the recruitment and activation of TBK1," Nature, Nature, vol. 569(7758), pages 718-722, May.
    5. Eugenio Mora & Manuela Dezi & Aurélie Cicco & Joëlle Bigay & Romain Gautier & John Manzi & Joël Polidori & Daniel Castaño-Díez & Bruno Mesmin & Bruno Antonny & Daniel Lévy, 2021. "Nanoscale architecture of a VAP-A-OSBP tethering complex at membrane contact sites," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Gentili & Bingxu Liu & Malvina Papanastasiou & Deborah Dele-Oni & Marc A. Schwartz & Rebecca J. Carlson & Aziz M. Al’Khafaji & Karsten Krug & Adam Brown & John G. Doench & Steven A. Carr & Nir , 2023. "ESCRT-dependent STING degradation inhibits steady-state and cGAMP-induced signalling," Nature Communications, Nature, vol. 14(1), pages 1-22, December.
    2. Martha Triantafilou & Joshi Ramanjulu & Lee M. Booty & Gisela Jimenez-Duran & Hakan Keles & Ken Saunders & Neysa Nevins & Emma Koppe & Louise K. Modis & G. Scott Pesiridis & John Bertin & Kathy Triant, 2022. "Human rhinovirus promotes STING trafficking to replication organelles to promote viral replication," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    3. Haruka Kemmoku & Kanoko Takahashi & Kojiro Mukai & Toshiki Mori & Koichiro M. Hirosawa & Fumika Kiku & Yasunori Uchida & Yoshihiko Kuchitsu & Yu Nishioka & Masaaki Sawa & Takuma Kishimoto & Kazuma Tan, 2024. "Single-molecule localization microscopy reveals STING clustering at the trans-Golgi network through palmitoylation-dependent accumulation of cholesterol," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Wei-Wei Luo & Zhen Tong & Pan Cao & Fu-Bing Wang & Ying Liu & Zhou-Qin Zheng & Su-Yun Wang & Shu Li & Yan-Yi Wang, 2022. "Transcription-independent regulation of STING activation and innate immune responses by IRF8 in monocytes," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    5. Zhibin Lin & Peijun Yang & Yufeng Hu & Hao Xu & Juanli Duan & Fei He & Kefeng Dou & Lin Wang, 2023. "RING finger protein 13 protects against nonalcoholic steatohepatitis by targeting STING-relayed signaling pathways," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    6. Tomalika R. Ullah & Matt D. Johansen & Katherine R. Balka & Rebecca L. Ambrose & Linden J. Gearing & James Roest & Julian P. Vivian & Sunil Sapkota & W. Samantha N. Jayasekara & Daniel S. Wenholz & Vi, 2023. "Pharmacological inhibition of TBK1/IKKε blunts immunopathology in a murine model of SARS-CoV-2 infection," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    7. Alex J. Pollock & Shivam A. Zaver & Joshua J. Woodward, 2020. "A STING-based biosensor affords broad cyclic dinucleotide detection within single living eukaryotic cells," Nature Communications, Nature, vol. 11(1), pages 1-13, December.
    8. Rana Falahat & Anders Berglund & Patricio Perez-Villarroel & Ryan M. Putney & Imene Hamaidi & Sungjune Kim & Shari Pilon-Thomas & Glen N. Barber & James J. Mulé, 2023. "Epigenetic state determines the in vivo efficacy of STING agonist therapy," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    9. Xudong Chen & Min Xie & Sensen Zhang & Marta Monguió-Tortajada & Jian Yin & Chang Liu & Youqi Zhang & Maeva Delacrétaz & Mingyue Song & Yixue Wang & Lin Dong & Qiang Ding & Boda Zhou & Xiaolin Tian & , 2023. "Structural basis for recruitment of TASL by SLC15A4 in human endolysosomal TLR signaling," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Remzi Onur Eren & Göksu Gökberk Kaya & Robin Schwarzer & Manolis Pasparakis, 2024. "IKKε and TBK1 prevent RIPK1 dependent and independent inflammation," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    11. Wenbin Zhong & Weize Lin & Yingjie Yang & Dan Chen & Xiuye Cao & Mengyang Xu & Guoping Pan & Huanzhao Chen & Jie Zheng & Xiaoqin Feng & Li hua Yang & Chaofeng Lai & Vesa M. Olkkonen & Jun Xu & Shuzhon, 2022. "An acquired phosphatidylinositol 4-phosphate transport initiates T-cell deterioration and leukemogenesis," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    12. Qiao-qiao He & Yu Huang & Longyu Nie & Sheng Ren & Gang Xu & Feiyan Deng & Zhikui Cheng & Qi Zuo & Lin Zhang & Huanhuan Cai & Qiming Wang & Fubing Wang & Hong Ren & Huan Yan & Ke Xu & Li Zhou & Mengji, 2023. "MAVS integrates glucose metabolism and RIG-I-like receptor signaling," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    13. Shirin Fatma & Arpita Chakravarti & Xuankun Zeng & Raven H. Huang, 2021. "Molecular mechanisms of the CdnG-Cap5 antiphage defense system employing 3′,2′-cGAMP as the second messenger," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    14. Yongfang Lin & Jing Yang & Qili Yang & Sha Zeng & Jiayu Zhang & Yuanxiang Zhu & Yuxin Tong & Lin Li & Weiqi Tan & Dahua Chen & Qinmiao Sun, 2023. "PTK2B promotes TBK1 and STING oligomerization and enhances the STING-TBK1 signaling," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    15. Yaling Dou & Rui Chen & Siyao Liu & Yi-Tsang Lee & Ji Jing & Xiaoxuan Liu & Yuepeng Ke & Rui Wang & Yubin Zhou & Yun Huang, 2023. "Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    16. Xintao Tu & Ting-Ting Chu & Devon Jeltema & Kennady Abbott & Kun Yang & Cong Xing & Jie Han & Nicole Dobbs & Nan Yan, 2022. "Interruption of post-Golgi STING trafficking activates tonic interferon signaling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    17. Xia Li & Wenfang Yin & Junjie Desmond Lin & Yong Zhang & Quan Guo & Gerun Wang & Xiayu Chen & Binbin Cui & Mingfang Wang & Min Chen & Peng Li & Ya-Wen He & Wei Qian & Haibin Luo & Lian-Hui Zhang & Xue, 2023. "Regulation of the physiology and virulence of Ralstonia solanacearum by the second messenger 2′,3′-cyclic guanosine monophosphate," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Manas Sharma & Trason Thode & Alexis Weston & Mohan R Kaadige, 2018. "HematologicalDevelopment of Enpp1 Inhibitors as a Strategy to Activate Stimulator of Interferon Genes (STING) in Cancers and Other Diseases," International Journal of Cell Science & Molecular Biology, Juniper Publishers Inc., vol. 5(1), pages 24-28, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47046-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.