IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-47028-7.html
   My bibliography  Save this article

Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer’s pathology

Author

Listed:
  • Prateek Kumar

    (Emory University School of Medicine
    Emory University School of Medicine
    Yale University School of Medicine)

  • Annie M. Goettemoeller

    (Emory University School of Medicine
    Emory University)

  • Claudia Espinosa-Garcia

    (Emory University School of Medicine
    Yale University School of Medicine)

  • Brendan R. Tobin

    (Georgia Institute of Technology)

  • Ali Tfaily

    (Yale University School of Medicine)

  • Ruth S. Nelson

    (Yale University School of Medicine)

  • Aditya Natu

    (Emory University School of Medicine)

  • Eric B. Dammer

    (Emory University School of Medicine
    Emory University)

  • Juliet V. Santiago

    (Emory University School of Medicine
    Emory University School of Medicine
    Emory University)

  • Sneha Malepati

    (Emory University School of Medicine
    Emory University School of Medicine)

  • Lihong Cheng

    (Emory University School of Medicine
    Emory University School of Medicine)

  • Hailian Xiao

    (Emory University School of Medicine
    Emory University School of Medicine)

  • Duc D. Duong

    (Emory University School of Medicine
    Emory University)

  • Nicholas T. Seyfried

    (Emory University School of Medicine
    Emory University School of Medicine
    Emory University)

  • Levi B. Wood

    (Georgia Institute of Technology
    GeoInsrgia titute of Technology)

  • Matthew J. M. Rowan

    (Emory University School of Medicine
    Emory University School of Medicine)

  • Srikant Rangaraju

    (Emory University School of Medicine
    Emory University School of Medicine
    Yale University School of Medicine)

Abstract

Dysfunction in fast-spiking parvalbumin interneurons (PV-INs) may represent an early pathophysiological perturbation in Alzheimer’s Disease (AD). Defining early proteomic alterations in PV-INs can provide key biological and translationally-relevant insights. We used cell-type-specific in-vivo biotinylation of proteins (CIBOP) coupled with mass spectrometry to obtain native-state PV-IN proteomes. PV-IN proteomic signatures include high metabolic and translational activity, with over-representation of AD-risk and cognitive resilience-related proteins. In bulk proteomes, PV-IN proteins were associated with cognitive decline in humans, and with progressive neuropathology in humans and the 5xFAD mouse model of Aβ pathology. PV-IN CIBOP in early stages of Aβ pathology revealed signatures of increased mitochondria and metabolism, synaptic and cytoskeletal disruption and decreased mTOR signaling, not apparent in whole-brain proteomes. Furthermore, we demonstrated pre-synaptic defects in PV-to-excitatory neurotransmission, validating our proteomic findings. Overall, in this study we present native-state proteomes of PV-INs, revealing molecular insights into their unique roles in cognitive resiliency and AD pathogenesis.

Suggested Citation

  • Prateek Kumar & Annie M. Goettemoeller & Claudia Espinosa-Garcia & Brendan R. Tobin & Ali Tfaily & Ruth S. Nelson & Aditya Natu & Eric B. Dammer & Juliet V. Santiago & Sneha Malepati & Lihong Cheng & , 2024. "Native-state proteomics of Parvalbumin interneurons identifies unique molecular signatures and vulnerabilities to early Alzheimer’s pathology," Nature Communications, Nature, vol. 15(1), pages 1-26, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47028-7
    DOI: 10.1038/s41467-024-47028-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-47028-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-47028-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tal Nuriel & Sergio L. Angulo & Usman Khan & Archana Ashok & Qiuying Chen & Helen Y. Figueroa & Sheina Emrani & Li Liu & Mathieu Herman & Geoffrey Barrett & Valerie Savage & Luna Buitrago & Efrain Cep, 2017. "Neuronal hyperactivity due to loss of inhibitory tone in APOE4 mice lacking Alzheimer’s disease-like pathology," Nature Communications, Nature, vol. 8(1), pages 1-14, December.
    2. Rebecca D. Hodge & Trygve E. Bakken & Jeremy A. Miller & Kimberly A. Smith & Eliza R. Barkan & Lucas T. Graybuck & Jennie L. Close & Brian Long & Nelson Johansen & Osnat Penn & Zizhen Yao & Jeroen Egg, 2019. "Conserved cell types with divergent features in human versus mouse cortex," Nature, Nature, vol. 573(7772), pages 61-68, September.
    3. Shinya Tasaki & Jishu Xu & Denis R. Avey & Lynnaun Johnson & Vladislav A. Petyuk & Robert J. Dawe & David A. Bennett & Yanling Wang & Chris Gaiteri, 2022. "Inferring protein expression changes from mRNA in Alzheimer’s dementia using deep neural networks," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    4. Hideji Murakoshi & Hong Wang & Ryohei Yasuda, 2011. "Local, persistent activation of Rho GTPases during plasticity of single dendritic spines," Nature, Nature, vol. 472(7341), pages 100-104, April.
    5. Bosiljka Tasic & Zizhen Yao & Lucas T. Graybuck & Kimberly A. Smith & Thuc Nghi Nguyen & Darren Bertagnolli & Jeff Goldy & Emma Garren & Michael N. Economo & Sarada Viswanathan & Osnat Penn & Trygve B, 2018. "Shared and distinct transcriptomic cell types across neocortical areas," Nature, Nature, vol. 563(7729), pages 72-78, November.
    6. David A. Barbie & Pablo Tamayo & Jesse S. Boehm & So Young Kim & Susan E. Moody & Ian F. Dunn & Anna C. Schinzel & Peter Sandy & Etienne Meylan & Claudia Scholl & Stefan Fröhling & Edmond M. Chan & Ma, 2009. "Systematic RNA interference reveals that oncogenic KRAS-driven cancers require TBK1," Nature, Nature, vol. 462(7269), pages 108-112, November.
    7. Najate Benamer & Marie Vidal & Maddalena Balia & María Cecilia Angulo, 2020. "Myelination of parvalbumin interneurons shapes the function of cortical sensory inhibitory circuits," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    8. Christiaan A de Leeuw & Joris M Mooij & Tom Heskes & Danielle Posthuma, 2015. "MAGMA: Generalized Gene-Set Analysis of GWAS Data," PLOS Computational Biology, Public Library of Science, vol. 11(4), pages 1-19, April.
    9. Maria Antonietta Tosches & Heather J. Lee, 2023. "Cellular atlases of the entire mouse brain," Nature, Nature, vol. 624(7991), pages 253-255, December.
    10. Eugenio F. Fornasiero & Sunit Mandad & Hanna Wildhagen & Mihai Alevra & Burkhard Rammner & Sarva Keihani & Felipe Opazo & Inga Urban & Till Ischebeck & M. Sadman Sakib & Maryam K. Fard & Koray Kirli &, 2018. "Precisely measured protein lifetimes in the mouse brain reveal differences across tissues and subcellular fractions," Nature Communications, Nature, vol. 9(1), pages 1-17, December.
    11. Sruti Rayaprolu & Sara Bitarafan & Juliet V. Santiago & Ranjita Betarbet & Sydney Sunna & Lihong Cheng & Hailian Xiao & Ruth S. Nelson & Prateek Kumar & Pritha Bagchi & Duc M. Duong & Annie M. Goettem, 2022. "Cell type-specific biotin labeling in vivo resolves regional neuronal and astrocyte proteomic differences in mouse brain," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jingyang Qian & Jie Liao & Ziqi Liu & Ying Chi & Yin Fang & Yanrong Zheng & Xin Shao & Bingqi Liu & Yongjin Cui & Wenbo Guo & Yining Hu & Hudong Bao & Penghui Yang & Qian Chen & Mingxiao Li & Bing Zha, 2023. "Reconstruction of the cell pseudo-space from single-cell RNA sequencing data with scSpace," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    2. Ying Lei & Mengnan Cheng & Zihao Li & Zhenkun Zhuang & Liang Wu & Yunong sun & Lei Han & Zhihao Huang & Yuzhou Wang & Zifei Wang & Liqin Xu & Yue Yuan & Shang Liu & Taotao Pan & Jiarui Xie & Chuanyu L, 2022. "Spatially resolved gene regulatory and disease-related vulnerability map of the adult Macaque cortex," Nature Communications, Nature, vol. 13(1), pages 1-20, December.
    3. Yina Wei & Anirban Nandi & Xiaoxuan Jia & Joshua H. Siegle & Daniel Denman & Soo Yeun Lee & Anatoly Buchin & Werner Geit & Clayton P. Mosher & Shawn Olsen & Costas A. Anastassiou, 2023. "Associations between in vitro, in vivo and in silico cell classes in mouse primary visual cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Gavin J. Sutton & Daniel Poppe & Rebecca K. Simmons & Kieran Walsh & Urwah Nawaz & Ryan Lister & Johann A. Gagnon-Bartsch & Irina Voineagu, 2022. "Comprehensive evaluation of deconvolution methods for human brain gene expression," Nature Communications, Nature, vol. 13(1), pages 1-18, December.
    5. Nelson Johansen & Hongru Hu & Gerald Quon, 2023. "Projecting RNA measurements onto single cell atlases to extract cell type-specific expression profiles using scProjection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    6. Jia-Ru Wei & Zhao-Zhe Hao & Chuan Xu & Mengyao Huang & Lei Tang & Nana Xu & Ruifeng Liu & Yuhui Shen & Sarah A. Teichmann & Zhichao Miao & Sheng Liu, 2022. "Identification of visual cortex cell types and species differences using single-cell RNA sequencing," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    7. Daniel J. Lodge & Hannah B. Elam & Angela M. Boley & Jennifer J. Donegan, 2023. "Discrete hippocampal projections are differentially regulated by parvalbumin and somatostatin interneurons," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Yuqiu Zhou & Wei He & Weizhen Hou & Ying Zhu, 2024. "Pianno: a probabilistic framework automating semantic annotation for spatial transcriptomics," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    9. Qingnan Liang & Yuefan Huang & Shan He & Ken Chen, 2023. "Pathway centric analysis for single-cell RNA-seq and spatial transcriptomics data with GSDensity," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. Elena V. Feofanova & Michael R. Brown & Taryn Alkis & Astrid M. Manuel & Xihao Li & Usman A. Tahir & Zilin Li & Kevin M. Mendez & Rachel S. Kelly & Qibin Qi & Han Chen & Martin G. Larson & Rozenn N. L, 2023. "Whole-Genome Sequencing Analysis of Human Metabolome in Multi-Ethnic Populations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Jonathan P. Ling & Alexei M. Bygrave & Clayton P. Santiago & Rogger P. Carmen-Orozco & Vickie T. Trinh & Minzhong Yu & Yini Li & Ying Liu & Kyra D. Bowden & Leighton H. Duncan & Jeong Han & Kamil Tane, 2022. "Cell-specific regulation of gene expression using splicing-dependent frameshifting," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    12. Dehua Peng & Zhipeng Gui & Dehe Wang & Yuncheng Ma & Zichen Huang & Yu Zhou & Huayi Wu, 2022. "Clustering by measuring local direction centrality for data with heterogeneous density and weak connectivity," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    13. Olga A Vsevolozhskaya & Min Shi & Fengjiao Hu & Dmitri V Zaykin, 2020. "DOT: Gene-set analysis by combining decorrelated association statistics," PLOS Computational Biology, Public Library of Science, vol. 16(4), pages 1-25, April.
    14. Giuseppe Chindemi & Marwan Abdellah & Oren Amsalem & Ruth Benavides-Piccione & Vincent Delattre & Michael Doron & András Ecker & Aurélien T. Jaquier & James King & Pramod Kumbhar & Caitlin Monney & Ro, 2022. "A calcium-based plasticity model for predicting long-term potentiation and depression in the neocortex," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    15. Tingting Bo & Jie Li & Ganlu Hu & Ge Zhang & Wei Wang & Qian Lv & Shaoling Zhao & Junjie Ma & Meng Qin & Xiaohui Yao & Meiyun Wang & Guang-Zhong Wang & Zheng Wang, 2023. "Brain-wide and cell-specific transcriptomic insights into MRI-derived cortical morphology in macaque monkeys," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    16. Dmitry Kobak & Yves Bernaerts & Marissa A. Weis & Federico Scala & Andreas S. Tolias & Philipp Berens, 2021. "Sparse reduced‐rank regression for exploratory visualisation of paired multivariate data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(4), pages 980-1000, August.
    17. Sophie A. Riesmeijer & Zoha Kamali & Michael Ng & Dmitriy Drichel & Bram Piersma & Kerstin Becker & Thomas B. Layton & Jagdeep Nanchahal & Michael Nothnagel & Ahmad Vaez & Hans Christian Hennies & Pau, 2024. "A genome-wide association meta-analysis implicates Hedgehog and Notch signaling in Dupuytren’s disease," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    18. Jonathan J. Swietlik & Stefanie Bärthel & Chiara Falcomatà & Diana Fink & Ankit Sinha & Jingyuan Cheng & Stefan Ebner & Peter Landgraf & Daniela C. Dieterich & Henrik Daub & Dieter Saur & Felix Meissn, 2023. "Cell-selective proteomics segregates pancreatic cancer subtypes by extracellular proteins in tumors and circulation," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    19. Zhiqiang Sha & Dick Schijven & Amaia Carrion-Castillo & Marc Joliot & Bernard Mazoyer & Simon E. Fisher & Fabrice Crivello & Clyde Francks, 2021. "The genetic architecture of structural left–right asymmetry of the human brain," Nature Human Behaviour, Nature, vol. 5(9), pages 1226-1239, September.
    20. Tal M. Dankovich & Rahul Kaushik & Linda H. M. Olsthoorn & Gabriel Cassinelli Petersen & Philipp Emanuel Giro & Verena Kluever & Paola Agüi-Gonzalez & Katharina Grewe & Guobin Bao & Sabine Beuermann &, 2021. "Extracellular matrix remodeling through endocytosis and resurfacing of Tenascin-R," Nature Communications, Nature, vol. 12(1), pages 1-23, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-47028-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.