IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46996-0.html
   My bibliography  Save this article

Subcellular pathways through VGluT3-expressing mouse amacrine cells provide locally tuned object-motion-selective signals in the retina

Author

Listed:
  • Karl Friedrichsen

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Jen-Chun Hsiang

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Chin-I Lin

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Liam McCoy

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Katia Valkova

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Daniel Kerschensteiner

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

  • Josh L. Morgan

    (Washington University in St. Louis
    Washington University in St. Louis
    Washington University in St. Louis)

Abstract

VGluT3-expressing mouse retinal amacrine cells (VG3s) respond to small-object motion and connect to multiple types of bipolar cells (inputs) and retinal ganglion cells (RGCs, outputs). Because these input and output connections are intermixed on the same dendrites, making sense of VG3 circuitry requires comparing the distribution of synapses across their arbors to the subcellular flow of signals. Here, we combine subcellular calcium imaging and electron microscopic connectomic reconstruction to analyze how VG3s integrate and transmit visual information. VG3s receive inputs from all nearby bipolar cell types but exhibit a strong preference for the fast type 3a bipolar cells. By comparing input distributions to VG3 dendrite responses, we show that VG3 dendrites have a short functional length constant that likely depends on inhibitory shunting. This model predicts that RGCs that extend dendrites into the middle layers of the inner plexiform encounter VG3 dendrites whose responses vary according to the local bipolar cell response type.

Suggested Citation

  • Karl Friedrichsen & Jen-Chun Hsiang & Chin-I Lin & Liam McCoy & Katia Valkova & Daniel Kerschensteiner & Josh L. Morgan, 2024. "Subcellular pathways through VGluT3-expressing mouse amacrine cells provide locally tuned object-motion-selective signals in the retina," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46996-0
    DOI: 10.1038/s41467-024-46996-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46996-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46996-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Moritz Helmstaedter & Kevin L. Briggman & Srinivas C. Turaga & Viren Jain & H. Sebastian Seung & Winfried Denk, 2013. "Connectomic reconstruction of the inner plexiform layer in the mouse retina," Nature, Nature, vol. 500(7461), pages 168-174, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Allard & M Ángeles Serrano, 2020. "Navigable maps of structural brain networks across species," PLOS Computational Biology, Public Library of Science, vol. 16(2), pages 1-20, February.
    2. Andrew Jo & Sercan Deniz & Jian Xu & Robert M. Duvoisin & Steven H. DeVries & Yongling Zhu, 2023. "A sign-inverted receptive field of inhibitory interneurons provides a pathway for ON-OFF interactions in the retina," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    3. Zhe Li & Yi Wang & Kesheng Wang, 2020. "A data-driven method based on deep belief networks for backlash error prediction in machining centers," Journal of Intelligent Manufacturing, Springer, vol. 31(7), pages 1693-1705, October.
    4. David Swygart & Wan-Qing Yu & Shunsuke Takeuchi & Rachel O. L. Wong & Gregory W. Schwartz, 2024. "A presynaptic source drives differing levels of surround suppression in two mouse retinal ganglion cell types," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    5. Alex D Herbert & Antony M Carr & Eva Hoffmann, 2014. "FindFoci: A Focus Detection Algorithm with Automated Parameter Training That Closely Matches Human Assignments, Reduces Human Inconsistencies and Increases Speed of Analysis," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-33, December.
    6. Munir Husein & Il-Yop Chung, 2019. "Day-Ahead Solar Irradiance Forecasting for Microgrids Using a Long Short-Term Memory Recurrent Neural Network: A Deep Learning Approach," Energies, MDPI, vol. 12(10), pages 1-21, May.
    7. Jen-Chun Hsiang & Ning Shen & Florentina Soto & Daniel Kerschensteiner, 2024. "Distributed feature representations of natural stimuli across parallel retinal pathways," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    8. Andrew Jo & Sercan Deniz & Suraj Cherian & Jian Xu & Daiki Futagi & Steven H. DeVries & Yongling Zhu, 2023. "Modular interneuron circuits control motion sensitivity in the mouse retina," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    9. Chad P. Grabner & Daiki Futagi & Jun Shi & Vytas Bindokas & Katsunori Kitano & Eric A. Schwartz & Steven H. DeVries, 2023. "Mechanisms of simultaneous linear and nonlinear computations at the mammalian cone photoreceptor synapse," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
    10. Héctor Acarón Ledesma & Jennifer Ding & Swen Oosterboer & Xiaolin Huang & Qiang Chen & Sui Wang & Michael Z. Lin & Wei Wei, 2024. "Dendritic mGluR2 and perisomatic Kv3 signaling regulate dendritic computation of mouse starburst amacrine cells," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    11. Adam Mani & Xinzhu Yang & Tiffany A. Zhao & Megan L. Leyrer & Daniel Schreck & David M. Berson, 2023. "A circuit suppressing retinal drive to the optokinetic system during fast image motion," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    12. Stefano Recanatesi & Gabriel Koch Ocker & Michael A Buice & Eric Shea-Brown, 2019. "Dimensionality in recurrent spiking networks: Global trends in activity and local origins in connectivity," PLOS Computational Biology, Public Library of Science, vol. 15(7), pages 1-29, July.
    13. Ilya Belevich & Merja Joensuu & Darshan Kumar & Helena Vihinen & Eija Jokitalo, 2016. "Microscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional Datasets," PLOS Biology, Public Library of Science, vol. 14(1), pages 1-13, January.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46996-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.