IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-46868-7.html
   My bibliography  Save this article

Focal adhesions contain three specialized actin nanoscale layers

Author

Listed:
  • Reena Kumari

    (University of Helsinki)

  • Katharina Ven

    (University of Helsinki)

  • Megan Chastney

    (University of Turku and Åbo Akademi University)

  • Shrikant B. Kokate

    (University of Helsinki)

  • Johan Peränen

    (University of Helsinki)

  • Jesse Aaron

    (HHMI Janelia Research Campus)

  • Konstantin Kogan

    (University of Helsinki)

  • Leonardo Almeida-Souza

    (University of Helsinki
    University of Helsinki)

  • Elena Kremneva

    (University of Helsinki)

  • Renaud Poincloux

    (Université de Toulouse, CNRS, UPS)

  • Teng-Leong Chew

    (HHMI Janelia Research Campus)

  • Peter W. Gunning

    (UNSW Sydney, Wallace Wurth Building)

  • Johanna Ivaska

    (University of Turku and Åbo Akademi University
    University of Turku
    University of Turku
    Foundation for the Finnish Cancer Institute)

  • Pekka Lappalainen

    (University of Helsinki
    University of Helsinki)

Abstract

Focal adhesions (FAs) connect inner workings of cell to the extracellular matrix to control cell adhesion, migration and mechanosensing. Previous studies demonstrated that FAs contain three vertical layers, which connect extracellular matrix to the cytoskeleton. By using super-resolution iPALM microscopy, we identify two additional nanoscale layers within FAs, specified by actin filaments bound to tropomyosin isoforms Tpm1.6 and Tpm3.2. The Tpm1.6-actin filaments, beneath the previously identified α-actinin cross-linked actin filaments, appear critical for adhesion maturation and controlled cell motility, whereas the adjacent Tpm3.2-actin filament layer beneath seems to facilitate adhesion disassembly. Mechanistically, Tpm3.2 stabilizes ACF-7/MACF1 and KANK-family proteins at adhesions, and hence targets microtubule plus-ends to FAs to catalyse their disassembly. Tpm3.2 depletion leads to disorganized microtubule network, abnormally stable FAs, and defects in tail retraction during migration. Thus, FAs are composed of distinct actin filament layers, and each may have specific roles in coupling adhesions to the cytoskeleton, or in controlling adhesion dynamics.

Suggested Citation

  • Reena Kumari & Katharina Ven & Megan Chastney & Shrikant B. Kokate & Johan Peränen & Jesse Aaron & Konstantin Kogan & Leonardo Almeida-Souza & Elena Kremneva & Renaud Poincloux & Teng-Leong Chew & Pet, 2024. "Focal adhesions contain three specialized actin nanoscale layers," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46868-7
    DOI: 10.1038/s41467-024-46868-7
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-46868-7
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-46868-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jiping Yue & Yao Zhang & Wenguang G. Liang & Xuewen Gou & Philbert Lee & Han Liu & Wanqing Lyu & Wei-Jen Tang & Shao-Yu Chen & Feng Yang & Hong Liang & Xiaoyang Wu, 2016. "In vivo epidermal migration requires focal adhesion targeting of ACF7," Nature Communications, Nature, vol. 7(1), pages 1-15, September.
    2. Daniel A. Fletcher & R. Dyche Mullins, 2010. "Cell mechanics and the cytoskeleton," Nature, Nature, vol. 463(7280), pages 485-492, January.
    3. Pakorn Kanchanawong & Gleb Shtengel & Ana M. Pasapera & Ericka B. Ramko & Michael W. Davidson & Harald F. Hess & Clare M. Waterman, 2010. "Nanoscale architecture of integrin-based cell adhesions," Nature, Nature, vol. 468(7323), pages 580-584, November.
    4. Aki Stubb & Camilo Guzmán & Elisa Närvä & Jesse Aaron & Teng-Leong Chew & Markku Saari & Mitro Miihkinen & Guillaume Jacquemet & Johanna Ivaska, 2019. "Superresolution architecture of cornerstone focal adhesions in human pluripotent stem cells," Nature Communications, Nature, vol. 10(1), pages 1-15, December.
    5. Dror S. Chorev & Oren Moscovitz & Benjamin Geiger & Michal Sharon, 2014. "Regulation of focal adhesion formation by a vinculin-Arp2/3 hybrid complex," Nature Communications, Nature, vol. 5(1), pages 1-11, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Venkat R. Chirasani & Mohammad Ashhar I. Khan & Juilee N. Malavade & Nikolay V. Dokholyan & Brenton D. Hoffman & Sharon L. Campbell, 2023. "Molecular basis and cellular functions of vinculin-actin directional catch bonding," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    2. Chao Jiang & Hong-Yu Luo & Xinpeng Xu & Shuo-Xing Dou & Wei Li & Dongshi Guan & Fangfu Ye & Xiaosong Chen & Ming Guo & Peng-Ye Wang & Hui Li, 2023. "Switch of cell migration modes orchestrated by changes of three-dimensional lamellipodium structure and intracellular diffusion," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    3. Xiaoyu Shi & Galo Garcia III & Yina Wang & Jeremy F Reiter & Bo Huang, 2019. "Deformed alignment of super-resolution images for semi-flexible structures," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-12, March.
    4. Sawako Yamashiro & David M. Rutkowski & Kelli Ann Lynch & Ying Liu & Dimitrios Vavylonis & Naoki Watanabe, 2023. "Force transmission by retrograde actin flow-induced dynamic molecular stretching of Talin," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    5. Muqing Cao & Xiaoxiao Zou & Chaoyi Li & Zaisheng Lin & Ni Wang & Zhongju Zou & Youqiong Ye & Joachim Seemann & Beth Levine & Zaiming Tang & Qing Zhong, 2023. "An actin filament branching surveillance system regulates cell cycle progression, cytokinesis and primary ciliogenesis," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    6. Gaurav Luthria & Ran Li & Stephanie Wang & Mark Prytyskach & Rainer H. Kohler & Douglas A. Lauffenburger & Timothy J. Mitchison & Ralph Weissleder & Miles A. Miller, 2020. "In vivo microscopy reveals macrophage polarization locally promotes coherent microtubule dynamics in migrating cancer cells," Nature Communications, Nature, vol. 11(1), pages 1-17, December.
    7. Suchet Nanda & Abram Calderon & Arya Sachan & Thanh-Thuy Duong & Johannes Koch & Xiaoyi Xin & Djamschid Solouk-Stahlberg & Yao-Wen Wu & Perihan Nalbant & Leif Dehmelt, 2023. "Rho GTPase activity crosstalk mediated by Arhgef11 and Arhgef12 coordinates cell protrusion-retraction cycles," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    8. Cecile O Mejean & Andrew W Schaefer & Kenneth B Buck & Holger Kress & Alla Shundrovsky & Jason W Merrill & Eric R Dufresne & Paul Forscher, 2013. "Elastic Coupling of Nascent apCAM Adhesions to Flowing Actin Networks," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
    9. Alves Ribeiro, Marcus V. & Jurjiu, Aurel & Galiceanu, Mircea, 2022. "Dynamics of semiflexible generalized scale-free polymer networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    10. Ronald Springer & Alexander Zielinski & Catharina Pleschka & Bernd Hoffmann & Rudolf Merkel, 2019. "Unbiased pattern analysis reveals highly diverse responses of cytoskeletal systems to cyclic straining," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-23, March.
    11. Chrystian Junqueira Alves & Rafael Dariolli & Jonathan Haydak & Sangjo Kang & Theodore Hannah & Robert J. Wiener & Stefanie DeFronzo & Rut Tejero & Gabriele L. Gusella & Aarthi Ramakrishnan & Rodrigo , 2021. "Plexin-B2 orchestrates collective stem cell dynamics via actomyosin contractility, cytoskeletal tension and adhesion," Nature Communications, Nature, vol. 12(1), pages 1-23, December.
    12. Antoine Vian & Marie Pochitaloff & Shuo-Ting Yen & Sangwoo Kim & Jennifer Pollock & Yucen Liu & Ellen M. Sletten & Otger Campàs, 2023. "In situ quantification of osmotic pressure within living embryonic tissues," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    13. Song Gao & Shuaibin Wang & Zhiying Zhao & Chao Zhang & Zhicao Liu & Ping Ye & Zhifang Xu & Baozhu Yi & Kai Jiao & Gurudatta A. Naik & Shi Wei & Soroush Rais-Bahrami & Sejong Bae & Wei-Hsiung Yang & Gu, 2022. "TUBB4A interacts with MYH9 to protect the nucleus during cell migration and promotes prostate cancer via GSK3β/β-catenin signalling," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    14. Yuji Shimizu & Takanori Kihara & Seyed Mohammad Ali Haghparast & Shunsuke Yuba & Jun Miyake, 2012. "Simple Display System of Mechanical Properties of Cells and Their Dispersion," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.
    15. Alex M Valm & Rudolf Oldenbourg & Gary G Borisy, 2016. "Multiplexed Spectral Imaging of 120 Different Fluorescent Labels," PLOS ONE, Public Library of Science, vol. 11(7), pages 1-17, July.
    16. Jin-Sung Park & Il-Buem Lee & Hyeon-Min Moon & Seok-Cheol Hong & Minhaeng Cho, 2023. "Long-term cargo tracking reveals intricate trafficking through active cytoskeletal networks in the crowded cellular environment," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    17. Nishkantha Arulkumaran & Mervyn Singer & Stefan Howorka & Jonathan R. Burns, 2023. "Creating complex protocells and prototissues using simple DNA building blocks," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    18. Matt D. G. Hughes & Sophie Cussons & Benjamin S. Hanson & Kalila R. Cook & Tímea Feller & Najet Mahmoudi & Daniel L. Baker & Robert Ariëns & David A. Head & David J. Brockwell & Lorna Dougan, 2023. "Building block aspect ratio controls assembly, architecture, and mechanics of synthetic and natural protein networks," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    19. Weimin Li & Angdi Li & Bing Yu & Xiaoxiao Zhang & Xiaoyan Liu & Kate L. White & Raymond C. Stevens & Wolfgang Baumeister & Andrej Sali & Marion Jasnin & Liping Sun, 2024. "In situ structure of actin remodeling during glucose-stimulated insulin secretion using cryo-electron tomography," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    20. Jiu-Tao Hang & Yu Kang & Guang-Kui Xu & Huajian Gao, 2021. "A hierarchical cellular structural model to unravel the universal power-law rheological behavior of living cells," Nature Communications, Nature, vol. 12(1), pages 1-7, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-46868-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.